ConvoKit 开源项目教程
2024-09-13 16:22:44作者:魏献源Searcher
1. 项目介绍
ConvoKit 是一个用于分析对话和嵌入在对话中的社交互动的开源工具包。它提供了一个统一的框架来表示和操作对话数据,以及一个多样化的对话数据集集合。通过提供直观的界面来探索和与对话数据交互,ConvoKit 降低了对话分析计算方法的技术门槛,促进了这些方法的广泛采用。
ConvoKit 的主要功能包括:
- 提取对话特征
- 分析社交现象
- 提供多样化的对话数据集
- 降低对话分析的技术门槛
2. 项目快速启动
安装
首先,确保你已经安装了 Python 3.8 或更高版本。然后,使用 pip 安装 ConvoKit:
pip install convokit
快速示例
以下是一个简单的示例,展示如何使用 ConvoKit 加载一个对话数据集并进行基本分析:
import convokit
# 下载并加载一个对话数据集
corpus = convokit.download('conversations-gone-awry-corpus')
# 创建一个 Corpus 对象
corpus = convokit.Corpus(filename=corpus)
# 打印数据集中的对话数量
print(f"对话数量: {len(corpus.conversations)}")
# 打印数据集中的用户数量
print(f"用户数量: {len(corpus.speakers)}")
3. 应用案例和最佳实践
案例1:分析 Wikipedia 讨论页面的礼貌策略
ConvoKit 可以用于分析 Wikipedia 讨论页面中的礼貌策略。以下是一个示例代码,展示如何使用 ConvoKit 提取和分析礼貌策略:
from convokit import PolitenessStrategies
# 加载 Wikipedia 数据集
corpus = convokit.download('wiki-corpus')
# 创建 PolitenessStrategies 对象
ps = PolitenessStrategies()
# 提取礼貌策略
corpus = ps.transform(corpus)
# 打印每个对话的礼貌策略
for convo in corpus.iter_conversations():
print(convo.id, convo.get_utterance_ids())
案例2:预测对话中的情绪变化
ConvoKit 还可以用于预测对话中的情绪变化。以下是一个示例代码,展示如何使用 ConvoKit 进行情绪预测:
from convokit import Forecaster
# 加载数据集
corpus = convokit.download('conversations-gone-awry-corpus')
# 创建 Forecaster 对象
forecaster = Forecaster()
# 预测情绪变化
predictions = forecaster.forecast(corpus)
# 打印预测结果
for convo in corpus.iter_conversations():
print(convo.id, predictions[convo.id])
4. 典型生态项目
生态项目1:Edu-ConvoKit
Edu-ConvoKit 是一个专门为教育场景设计的开源框架,旨在促进对话语言数据在教育环境中的研究。它提供了一个实用的管道,用于文本预处理、注释和分析,满足研究人员和开发人员的需求。
生态项目2:Stanford Politeness Corpus
Stanford Politeness Corpus 是一个包含 Wikipedia 和 Stack Exchange 请求的数据集,带有礼貌注释。ConvoKit 可以与这个数据集结合使用,进一步分析和研究在线对话中的礼貌策略。
通过这些生态项目,ConvoKit 不仅在学术研究中发挥了重要作用,也在实际应用中展示了其强大的功能和灵活性。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0100AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133