ConvoKit 开源项目教程
2024-09-13 03:07:28作者:魏献源Searcher
1. 项目介绍
ConvoKit 是一个用于分析对话和嵌入在对话中的社交互动的开源工具包。它提供了一个统一的框架来表示和操作对话数据,以及一个多样化的对话数据集集合。通过提供直观的界面来探索和与对话数据交互,ConvoKit 降低了对话分析计算方法的技术门槛,促进了这些方法的广泛采用。
ConvoKit 的主要功能包括:
- 提取对话特征
- 分析社交现象
- 提供多样化的对话数据集
- 降低对话分析的技术门槛
2. 项目快速启动
安装
首先,确保你已经安装了 Python 3.8 或更高版本。然后,使用 pip 安装 ConvoKit:
pip install convokit
快速示例
以下是一个简单的示例,展示如何使用 ConvoKit 加载一个对话数据集并进行基本分析:
import convokit
# 下载并加载一个对话数据集
corpus = convokit.download('conversations-gone-awry-corpus')
# 创建一个 Corpus 对象
corpus = convokit.Corpus(filename=corpus)
# 打印数据集中的对话数量
print(f"对话数量: {len(corpus.conversations)}")
# 打印数据集中的用户数量
print(f"用户数量: {len(corpus.speakers)}")
3. 应用案例和最佳实践
案例1:分析 Wikipedia 讨论页面的礼貌策略
ConvoKit 可以用于分析 Wikipedia 讨论页面中的礼貌策略。以下是一个示例代码,展示如何使用 ConvoKit 提取和分析礼貌策略:
from convokit import PolitenessStrategies
# 加载 Wikipedia 数据集
corpus = convokit.download('wiki-corpus')
# 创建 PolitenessStrategies 对象
ps = PolitenessStrategies()
# 提取礼貌策略
corpus = ps.transform(corpus)
# 打印每个对话的礼貌策略
for convo in corpus.iter_conversations():
print(convo.id, convo.get_utterance_ids())
案例2:预测对话中的情绪变化
ConvoKit 还可以用于预测对话中的情绪变化。以下是一个示例代码,展示如何使用 ConvoKit 进行情绪预测:
from convokit import Forecaster
# 加载数据集
corpus = convokit.download('conversations-gone-awry-corpus')
# 创建 Forecaster 对象
forecaster = Forecaster()
# 预测情绪变化
predictions = forecaster.forecast(corpus)
# 打印预测结果
for convo in corpus.iter_conversations():
print(convo.id, predictions[convo.id])
4. 典型生态项目
生态项目1:Edu-ConvoKit
Edu-ConvoKit 是一个专门为教育场景设计的开源框架,旨在促进对话语言数据在教育环境中的研究。它提供了一个实用的管道,用于文本预处理、注释和分析,满足研究人员和开发人员的需求。
生态项目2:Stanford Politeness Corpus
Stanford Politeness Corpus 是一个包含 Wikipedia 和 Stack Exchange 请求的数据集,带有礼貌注释。ConvoKit 可以与这个数据集结合使用,进一步分析和研究在线对话中的礼貌策略。
通过这些生态项目,ConvoKit 不仅在学术研究中发挥了重要作用,也在实际应用中展示了其强大的功能和灵活性。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
220
88
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
281
315
React Native鸿蒙化仓库
JavaScript
286
335
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
436
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19