VLMEvalKit数据集处理中的选项解析问题与解决方案
背景介绍
在评估视觉语言模型性能的过程中,VLMEvalKit项目提供了多个标准数据集的支持。其中RealWorldQA和MMMU_DEV_VAL是两个重要的视觉问答基准测试集。然而,在数据集预处理阶段,我们发现了一些关于选项解析的技术问题,这些问题可能会影响模型评估的准确性。
问题分析
RealWorldQA数据集的问题
-
选项分隔符缺失导致的解析错误 在RealWorldQA数据集中,部分题目由于选项间缺少明确的分隔符(如句点"."),导致预处理脚本无法正确识别所有选项。例如index=105的题目,原始数据包含A、B、C三个选项,但由于B选项后缺少分隔符,预处理后仅保留了A和C两个选项,而正确答案C在这种情况下变得无效。
-
选项遗漏问题 类似的情况还出现在index=633的题目中,C选项因解析问题被遗漏,导致题目结构不完整。
-
答案格式不一致 部分题目如index=731,原始数据集中的答案未统一处理成标准选项格式,在预处理阶段也未进行修正,导致评估时可能出现偏差。
MMMU_DEV_VAL数据集的问题
- 特殊选项处理问题 在MMMU_DEV_VAL数据集中,当选项内容为"None"时,预处理过程中被错误地转换为NaN值。例如validation_Geography_15题目,D选项为"None",被处理为缺失值,导致模型评估时可能只显示ABC三个选项,而正确答案D在这种情况下无法被正确选择。
解决方案
针对上述问题,VLMEvalKit开发团队已采取以下措施:
-
改进选项解析逻辑 增强预处理脚本对选项分隔符的识别能力,增加对多种分隔形式的支持,确保所有选项都能被正确提取。
-
特殊值保留机制 对于"None"等特殊选项值,不再转换为NaN,而是保留原始字符串表示,确保选项完整性。
-
答案格式标准化 对所有题目的答案进行统一格式化处理,确保与选项表示方式一致。
-
数据校验流程 增加预处理后的数据校验步骤,通过对比原始数据集和预处理结果,确保所有题目和选项都被正确处理。
技术影响
这些问题的修复对于视觉语言模型的准确评估至关重要。选项解析错误会导致:
- 模型评估时面临不完整的题目信息
- 正确答案可能不在可用选项中
- 不同模型间的比较基准不一致
通过修正这些问题,VLMEvalKit能够提供更可靠、一致的评估环境,确保模型性能比较的公平性。
最佳实践建议
对于使用VLMEvalKit的研究人员,建议:
- 定期更新到最新版本的数据集处理脚本
- 在评估前检查样本题目是否被正确处理
- 对于关键实验,可手动验证部分题目的预处理结果
- 关注项目更新日志,及时获取数据集处理的改进信息
这些措施将帮助研究人员获得更准确的模型评估结果,推动视觉语言模型领域的可靠发展。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00