VLMEvalKit数据集处理中的选项解析问题与解决方案
背景介绍
在评估视觉语言模型性能的过程中,VLMEvalKit项目提供了多个标准数据集的支持。其中RealWorldQA和MMMU_DEV_VAL是两个重要的视觉问答基准测试集。然而,在数据集预处理阶段,我们发现了一些关于选项解析的技术问题,这些问题可能会影响模型评估的准确性。
问题分析
RealWorldQA数据集的问题
-
选项分隔符缺失导致的解析错误 在RealWorldQA数据集中,部分题目由于选项间缺少明确的分隔符(如句点"."),导致预处理脚本无法正确识别所有选项。例如index=105的题目,原始数据包含A、B、C三个选项,但由于B选项后缺少分隔符,预处理后仅保留了A和C两个选项,而正确答案C在这种情况下变得无效。
-
选项遗漏问题 类似的情况还出现在index=633的题目中,C选项因解析问题被遗漏,导致题目结构不完整。
-
答案格式不一致 部分题目如index=731,原始数据集中的答案未统一处理成标准选项格式,在预处理阶段也未进行修正,导致评估时可能出现偏差。
MMMU_DEV_VAL数据集的问题
- 特殊选项处理问题 在MMMU_DEV_VAL数据集中,当选项内容为"None"时,预处理过程中被错误地转换为NaN值。例如validation_Geography_15题目,D选项为"None",被处理为缺失值,导致模型评估时可能只显示ABC三个选项,而正确答案D在这种情况下无法被正确选择。
解决方案
针对上述问题,VLMEvalKit开发团队已采取以下措施:
-
改进选项解析逻辑 增强预处理脚本对选项分隔符的识别能力,增加对多种分隔形式的支持,确保所有选项都能被正确提取。
-
特殊值保留机制 对于"None"等特殊选项值,不再转换为NaN,而是保留原始字符串表示,确保选项完整性。
-
答案格式标准化 对所有题目的答案进行统一格式化处理,确保与选项表示方式一致。
-
数据校验流程 增加预处理后的数据校验步骤,通过对比原始数据集和预处理结果,确保所有题目和选项都被正确处理。
技术影响
这些问题的修复对于视觉语言模型的准确评估至关重要。选项解析错误会导致:
- 模型评估时面临不完整的题目信息
- 正确答案可能不在可用选项中
- 不同模型间的比较基准不一致
通过修正这些问题,VLMEvalKit能够提供更可靠、一致的评估环境,确保模型性能比较的公平性。
最佳实践建议
对于使用VLMEvalKit的研究人员,建议:
- 定期更新到最新版本的数据集处理脚本
- 在评估前检查样本题目是否被正确处理
- 对于关键实验,可手动验证部分题目的预处理结果
- 关注项目更新日志,及时获取数据集处理的改进信息
这些措施将帮助研究人员获得更准确的模型评估结果,推动视觉语言模型领域的可靠发展。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









