首页
/ 探索多步知识图谱推理:奖励塑造的力量

探索多步知识图谱推理:奖励塑造的力量

2024-05-22 05:46:37作者:咎岭娴Homer

在这个数字化的时代,知识图谱成为了理解和处理大量复杂信息的关键工具。为此,我们很高兴向您推荐一个创新的开源项目——Multi-Hop Knowledge Graph Reasoning with Reward Shaping。该项目由Xi Victoria Lin、Richard Socher和Caiming Xiong共同开发,并在EMNLP 2018上发表,旨在通过奖励塑造提升多步知识图谱推理的性能。

项目介绍

Multi-Hop Knowledge Graph Reasoning with Reward Shaping是一个基于深度学习的知识图谱推理框架,它通过强化学习策略实现了更精准的多步推理。其核心是利用奖励塑造技术改进传统的政策梯度方法,以引导模型进行更有效的探索和决策。

项目架构

技术分析

项目采用了一种混合方法,结合了嵌入式模型(如DistMult、Complex和Conve)与强化学习。在预处理阶段,数据被分装并转换为适合模型训练的格式。然后,通过PyTorch库进行模型训练,其中RL模型分为无奖励塑造和有奖励塑造两种策略。特别地,奖励塑造策略利用预先训练的嵌入式模型来指导政策网络的学习,从而提高推理的准确性和效率。

应用场景

这个项目广泛适用于需要高级推理能力的知识图谱应用中,例如:

  1. 智能问答系统:能够理解复杂的查询并返回准确答案。
  2. 数据挖掘:辅助发现隐藏的关联和模式。
  3. 个性化推荐:根据用户的多步兴趣进行定制化建议。

项目特点

  1. 灵活可扩展:支持多种知识图谱和模型配置,方便添加新的任务或算法。
  2. 高效实现:通过节点桶策略优化mini-batch训练,减少内存消耗和计算时间。
  3. 易用性:提供Docker环境,快速搭建实验平台;配置文件清晰,便于调整参数。
  4. 社区支持:开源且活跃,持续更新,用户可以贡献代码或寻求帮助。

要开始你的旅程,请参考项目的README快速启动指南,构建你的多步知识图谱推理应用。如果你对本项目有任何疑问或者取得进展,别忘了引用作者的工作并参与到社区的讨论中去!

@inproceedings{LinRX2018:MultiHopKG, 
  author = {Xi Victoria Lin and Richard Socher and Caiming Xiong}, 
  title = {Multi-Hop Knowledge Graph Reasoning with Reward Shaping}, 
  booktitle = {Proceedings of the 2018 Conference on Empirical Methods in Natural
               Language Processing, {EMNLP} 2018, Brussels, Belgium, October
               31-November 4, 2018},
  year = {2018} 
}

现在就加入,体验多步推理的新境界!

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8