cONNXr 开源项目教程
2024-08-27 12:01:33作者:蔡怀权
项目介绍
cONNXr 是一个纯 C 语言编写的 ONNX 运行时,旨在为嵌入式设备提供零依赖的推理能力。该项目不隶属于 ONNX 官方,也不是官方支持的解决方案,但它基于 ONNX 格式构建,旨在帮助那些希望在不支持官方运行时的设备上运行推理的用户。
项目快速启动
环境准备
确保你的开发环境已经安装了 C 语言编译器。
下载项目
git clone https://github.com/alrevuelta/cONNXr.git
cd cONNXr
编译项目
make
运行示例
以下是一个简单的示例代码,展示如何加载 ONNX 模型并进行推理:
#include "connxr.h"
int main() {
// 打开你的 ONNX 模型
Onnx__ModelProto *model = openOnnxFile("model.onnx");
// 创建你的输入张量或加载一个 protocol buffer 格式的输入
Onnx__TensorProto *inp0 = openTensorProtoFile("input0.pb");
// 设置输入名称
inp0->name = model->graph->input[0]->name;
// 创建输入数组
Onnx__TensorProto *inputs[] = { inp0 };
// 解析所有输入和操作符
resolve(model, inputs, 1);
// 运行模型
Onnx__TensorProto **outputs = runModel(model, inputs, 1);
// 处理输出
// ...
return 0;
}
应用案例和最佳实践
嵌入式设备上的推理
cONNXr 特别适用于需要在资源受限的嵌入式设备上进行推理的场景。例如,在物联网设备上运行轻量级神经网络模型,如 TinyYOLOv3 或 Quantized MNIST。
快速原型开发
由于 cONNXr 是纯 C 语言编写,且零依赖,它非常适合用于快速原型开发。开发者可以轻松地将 cONNXr 集成到现有项目中,进行快速测试和验证。
典型生态项目
ONNX
ONNX(Open Neural Network Exchange)是一个开放的生态系统,旨在使不同深度学习框架之间的模型共享和转换变得更加容易。cONNXr 作为 ONNX 的一个非官方运行时,扩展了 ONNX 的使用范围。
TensorFlow Lite
TensorFlow Lite 是 TensorFlow 的一个轻量级版本,适用于移动和嵌入式设备。虽然 TensorFlow Lite 有自己的运行时,但 cONNXr 可以作为一个补充,特别是在需要运行 ONNX 格式的模型时。
PyTorch
PyTorch 是一个流行的深度学习框架,支持将模型导出为 ONNX 格式。通过 cONNXr,PyTorch 模型可以在嵌入式设备上进行推理,无需依赖 PyTorch 的运行时。
通过以上内容,你可以快速了解并开始使用 cONNXr 项目。希望这个教程对你有所帮助!
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
《SIFTGPU:在GPU上实现尺度不变特征变换的安装与使用教程》 探索开源漫画阅读器ComicFlow:安装与使用教程 《USB Cam:开启ROS 2相机之旅》 深入探索ns-3-dev:开源网络模拟器的安装与使用指南 《lest测试框架的安装与使用教程》 《A-KAZE特征点的提取与匹配:开源项目实战指南》 《DS3232RTC库的安装与使用教程》 探索frePPLe:制造业供应链计划的开源解决方案安装与使用教程 《ROS-Industrial 基础培训教程:industrial_training 的安装与使用》 深入了解MultiVNC:跨平台Multicast支持的VNC查看器安装与使用教程
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4