mvcnn 的安装和配置教程
1. 项目的基础介绍和主要的编程语言
mvcnn(Multi-view Convolutional Neural Networks)是一个用于形状识别的开源项目。该项目通过训练卷积神经网络(CNN)来学习形状识别的通用描述符,主要利用基于视图的形状表示作为训练线索。该项目的目标是处理例如线绘图、去除颜色的剪贴画图像或者几乎没有纹理信息的3D模型渲染等场景。项目的主要编程语言是MATLAB,同时也包含一些Python、JavaScript、C++和M语言的代码。
2. 项目使用的关键技术和框架
项目使用的关键技术是卷积神经网络(CNN),这是一种深度学习算法,广泛应用于图像识别、物体检测和分类等领域。CNN通过利用图像的空间层次结构,能够有效地提取图像特征,用于后续的形状识别。
项目的主要框架是MATLAB,它提供了一个交互式环境,用于算法开发、数据分析和可视化。在项目中,MATLAB用于实现CNN模型、数据处理和结果分析。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保您的系统中已经安装了以下软件:
- MATLAB:建议使用最新版本的MATLAB,以确保兼容性。
- Git:用于克隆项目代码。
安装步骤
-
克隆项目仓库
打开命令行工具,使用以下命令克隆项目仓库:
git clone https://github.com/suhangpro/mvcnn.git -
安装依赖项
在项目根目录下,运行以下命令更新子模块:
git submodule update --init -
编译项目
根据您的系统配置(CPU或GPU),选择以下一种方式进行编译:
-
编译为CPU版本:
设置两个环境变量,例如
MATLABDIR=<MATLAB_ROOT>和MEX=<MATLAB_ROOT>/bin/mex,然后在MATLAB命令行中执行以下命令:setup(true); exit; -
编译为GPU版本:
设置两个环境变量,例如
MATLABDIR=<MATLAB_ROOT>和MEX=<MATLAB_ROOT>/bin/mex,然后在MATLAB命令行中执行以下命令,同时可能需要设置其他编译选项(如cudaRoot和cudnnRoot):setup(true, struct('enableGpu', true, 'enableCudnn', true)); exit;如果是在Windows系统上,可能还需要在PATH环境变量中添加Visual Studio的
cl.exe路径。
-
-
使用示例
根据项目说明,可以通过MATLAB命令行来提取形状描述符。例如,提取一个形状的描述符:
shape_compute_descriptor('bunny.off');这将生成一个文本文件,其中包含
.off文件对应的形状描述符。
以上步骤完成了mvcnn的安装和配置。您现在可以开始使用该项目进行形状识别相关的开发工作了。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01