Daft项目新增Expr.skew方法:简化数据偏度计算
在数据分析领域,数据分布的偏度(Skewness)是一个重要的统计指标,它描述了数据分布的不对称程度。正偏度表示数据右侧有更长的尾部,而负偏度则表示左侧有更长的尾部。对于使用Daft这一分布式DataFrame库的用户来说,计算数据偏度是一个常见需求。
Daft项目在0.4.15版本中新增了Expr.skew方法,这使得用户能够更加便捷地计算数据列的偏度。在此之前,用户可能需要通过复杂的表达式或自定义函数来实现这一功能。新方法的加入显著提升了数据分析的效率和代码的可读性。
Expr.skew方法的实现参考了其他流行数据处理框架的设计,如Spark的skewness函数和Polars的skew实现。这使得熟悉这些框架的用户可以无缝过渡到Daft的使用。方法的命名保持了Daft一贯的简洁风格,与现有API设计保持一致。
从技术实现角度来看,偏度计算需要考虑数据的中心矩和标准差。Daft作为一个分布式框架,其实现需要确保计算过程能够高效地并行执行。Expr.skew方法的底层实现应该会利用分布式计算的优势,确保在大规模数据集上也能保持良好的性能。
对于数据分析师和数据科学家来说,这一新增功能意味着他们可以更轻松地进行数据探索和特征工程。例如,在机器学习项目中,了解特征的偏度分布有助于决定是否需要进行数据转换(如对数变换)来改善模型性能。
随着Daft项目的持续发展,类似Expr.skew这样的统计函数不断完善,使得Daft在数据处理和分析领域的竞争力不断增强。对于考虑采用Daft作为数据处理解决方案的团队来说,这些新增功能提供了更多选择Daft的理由。
建议用户升级到0.4.15或更高版本来体验这一新功能。对于需要处理大规模数据且关注数据分布特性的应用场景,Expr.skew方法将成为数据分析工具箱中一个实用的新成员。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00