MCP Flutter项目LLM安装与配置完全指南
2025-06-24 13:14:08作者:齐添朝
前言
MCP Flutter Inspector是一款强大的Flutter应用调试工具,它通过LLM(大型语言模型)为开发者提供智能化的应用检查和交互能力。本文将详细介绍如何为MCP Flutter项目配置LLM环境,使AI助手能够与Flutter应用进行深度交互。
环境准备
在开始安装前,请确保您的开发环境满足以下要求:
- Flutter SDK:已安装并配置完成(包含Dart SDK)
- Flutter应用:准备一个用于调试的Flutter项目
- AI助手:支持Cursor、Claude、Cline AI等MCP兼容工具
- Git工具:用于代码仓库的克隆和管理
安装步骤详解
第一步:获取用户信息(AI助手执行)
在开始安装前,AI助手需要获取以下关键信息:
- 询问用户希望将
mcp_flutter
仓库克隆到哪个目录(记为[MCP_SERVER_BASE_PATH]
) - 确认要配置的Flutter应用项目路径(记为
[FLUTTER_APP_PATH]
)
重要提示:在获取这些路径信息前,不要继续后续步骤。
第二步:克隆仓库
使用获取到的[MCP_SERVER_BASE_PATH]
执行以下命令:
cd [MCP_SERVER_BASE_PATH]
git clone [仓库地址]
cd mcp_flutter
克隆完成后,记[CLONED_MCP_FLUTTER_PATH]
为[MCP_SERVER_BASE_PATH]/mcp_flutter
。
第三步:安装依赖并构建
在[CLONED_MCP_FLUTTER_PATH]
目录下执行:
make install
此命令将:
- 安装所有必要的Dart依赖
- 自动构建MCP服务器
- 在
mcp_server_dart/build/
目录下生成可执行文件flutter_inspector_mcp
第四步:为Flutter应用添加MCP工具包
进入用户的Flutter应用目录[FLUTTER_APP_PATH]
,执行:
flutter pub add mcp_toolkit
或者手动在pubspec.yaml
中添加依赖:
dependencies:
mcp_toolkit: ^0.2.0
然后运行:
flutter pub get
第五步:初始化MCP工具包
修改Flutter应用的main.dart
文件:
import 'package:flutter/material.dart';
import 'package:mcp_toolkit/mcp_toolkit.dart';
import 'dart:async';
Future<void> main() async {
runZonedGuarded(
() async {
WidgetsFlutterBinding.ensureInitialized();
MCPToolkitBinding.instance
..initialize()
..initializeFlutterToolkit();
runApp(const MyApp());
},
(error, stack) {
MCPToolkitBinding.instance.handleZoneError(error, stack);
},
);
}
注意:请将const MyApp()
替换为您应用的实际根组件。
第六步:以调试模式启动Flutter应用
使用以下命令启动Flutter应用:
flutter run --debug --host-vmservice-port=8182 --dds-port=8181 --enable-vm-service --disable-service-auth-codes
安全提示:--disable-service-auth-codes
标志目前是必要的安全绕过措施。
AI助手配置指南
根据您使用的AI助手类型,选择相应的配置方式:
Cline AI配置
- 编辑配置文件(通常位于
~/Library/Application Support/[IDE]/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json
)
{
"mcpServers": {
"flutter-inspector": {
"command": "[CLONED_MCP_FLUTTER_PATH]/mcp_server_dart/build/flutter_inspector_mcp",
"args": [
"--dart-vm-host=localhost",
"--dart-vm-port=8181",
"--resources",
"--images",
"--dynamics"
],
"env": {},
"disabled": false,
"autoApprove": []
}
}
}
- 重启Cline AI
Cursor配置
- 编辑
~/.cursor/mcp.json
文件:
{
"mcpServers": {
"flutter-inspector": {
"command": "[CLONED_MCP_FLUTTER_PATH]/mcp_server_dart/build/flutter_inspector_mcp",
"args": [
"--dart-vm-host=localhost",
"--dart-vm-port=8181",
"--no-resources",
"--images",
"--dynamics"
],
"env": {},
"disabled": false
}
}
}
- 重启Cursor
- 使用Cmd+L(macOS)打开Agent面板测试功能
Claude Desktop配置
- 编辑配置文件(通常位于
~/Library/Application Support/Claude/claude_desktop_config.json
)
{
"mcpServers": {
"flutter-inspector": {
"command": "[CLONED_MCP_FLUTTER_PATH]/mcp_server_dart/build/flutter_inspector_mcp",
"args": [
"--dart-vm-host=localhost",
"--dart-vm-port=8181",
"--resources",
"--images",
"--dynamics"
],
"env": {},
"disabled": false
}
}
}
- 重启Claude Desktop
动态工具注册功能
MCP Flutter Inspector v2.2.0引入了动态工具注册功能,允许:
- 运行时添加自定义工具
- 支持热重载
- 暴露应用特定的调试工具
示例代码
final customTool = MCPCallEntry.tool(
handler: (request) {
final name = request['name'] ?? 'World';
return MCPCallResult(
message: 'Hello, $name!',
parameters: {'greeting': 'Hello, $name!'},
);
},
definition: MCPToolDefinition(
name: 'say_hello',
description: 'Say hello to someone',
inputSchema: {
'type': 'object',
'properties': {
'name': {
'type': 'string',
'description': 'Name to greet',
},
},
},
),
);
await MCPToolkitBinding.instance.addEntries(entries: {customTool});
验证安装
完成安装后,可以通过以下方式验证:
- 确认Flutter应用以指定参数运行
- 确认AI助手已重启
- 尝试以下命令:
- "列出我的Flutter应用中的所有可用工具"
- "获取应用截图"
- "获取运行时错误"
常见问题解决
-
连接问题:
- 检查Flutter应用是否以正确的端口运行
- 验证AI工具的MCP服务器配置
-
MCP服务器未找到:
- 确认可执行文件路径正确
- 确保
make install
成功执行
-
权限问题:
- 检查文件权限
- 确保可执行文件有执行权限
-
工具不可用:
- 确认AI助手已重启
- 检查配置中的
disabled
标志
-
动态工具不显示:
- 确认
mcp_toolkit
正确初始化 - 使用
listClientToolsAndResources
验证注册 - 热重载Flutter应用
- 确认
命令行参数参考
MCP服务器支持以下参数:
--dart-vm-host
:Dart VM连接主机(默认:localhost)--dart-vm-port
:Dart VM连接端口(默认:8181)--resources
:启用资源支持--no-resources
:禁用资源支持--images
:启用图片支持--dumps
:启用转储支持--dynamics
:启用动态工具注册--log-level
:日志级别(默认:info)--environment
:环境(默认:production)
通过本文的详细指导,您应该能够成功为MCP Flutter项目配置LLM环境,充分利用AI助手增强您的Flutter开发体验。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
28