MCP Flutter项目LLM安装与配置完全指南
2025-06-24 22:21:02作者:齐添朝
前言
MCP Flutter Inspector是一款强大的Flutter应用调试工具,它通过LLM(大型语言模型)为开发者提供智能化的应用检查和交互能力。本文将详细介绍如何为MCP Flutter项目配置LLM环境,使AI助手能够与Flutter应用进行深度交互。
环境准备
在开始安装前,请确保您的开发环境满足以下要求:
- Flutter SDK:已安装并配置完成(包含Dart SDK)
- Flutter应用:准备一个用于调试的Flutter项目
- AI助手:支持Cursor、Claude、Cline AI等MCP兼容工具
- Git工具:用于代码仓库的克隆和管理
安装步骤详解
第一步:获取用户信息(AI助手执行)
在开始安装前,AI助手需要获取以下关键信息:
- 询问用户希望将
mcp_flutter仓库克隆到哪个目录(记为[MCP_SERVER_BASE_PATH]) - 确认要配置的Flutter应用项目路径(记为
[FLUTTER_APP_PATH])
重要提示:在获取这些路径信息前,不要继续后续步骤。
第二步:克隆仓库
使用获取到的[MCP_SERVER_BASE_PATH]执行以下命令:
cd [MCP_SERVER_BASE_PATH]
git clone [仓库地址]
cd mcp_flutter
克隆完成后,记[CLONED_MCP_FLUTTER_PATH]为[MCP_SERVER_BASE_PATH]/mcp_flutter。
第三步:安装依赖并构建
在[CLONED_MCP_FLUTTER_PATH]目录下执行:
make install
此命令将:
- 安装所有必要的Dart依赖
- 自动构建MCP服务器
- 在
mcp_server_dart/build/目录下生成可执行文件flutter_inspector_mcp
第四步:为Flutter应用添加MCP工具包
进入用户的Flutter应用目录[FLUTTER_APP_PATH],执行:
flutter pub add mcp_toolkit
或者手动在pubspec.yaml中添加依赖:
dependencies:
mcp_toolkit: ^0.2.0
然后运行:
flutter pub get
第五步:初始化MCP工具包
修改Flutter应用的main.dart文件:
import 'package:flutter/material.dart';
import 'package:mcp_toolkit/mcp_toolkit.dart';
import 'dart:async';
Future<void> main() async {
runZonedGuarded(
() async {
WidgetsFlutterBinding.ensureInitialized();
MCPToolkitBinding.instance
..initialize()
..initializeFlutterToolkit();
runApp(const MyApp());
},
(error, stack) {
MCPToolkitBinding.instance.handleZoneError(error, stack);
},
);
}
注意:请将const MyApp()替换为您应用的实际根组件。
第六步:以调试模式启动Flutter应用
使用以下命令启动Flutter应用:
flutter run --debug --host-vmservice-port=8182 --dds-port=8181 --enable-vm-service --disable-service-auth-codes
安全提示:--disable-service-auth-codes标志目前是必要的安全绕过措施。
AI助手配置指南
根据您使用的AI助手类型,选择相应的配置方式:
Cline AI配置
- 编辑配置文件(通常位于
~/Library/Application Support/[IDE]/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json)
{
"mcpServers": {
"flutter-inspector": {
"command": "[CLONED_MCP_FLUTTER_PATH]/mcp_server_dart/build/flutter_inspector_mcp",
"args": [
"--dart-vm-host=localhost",
"--dart-vm-port=8181",
"--resources",
"--images",
"--dynamics"
],
"env": {},
"disabled": false,
"autoApprove": []
}
}
}
- 重启Cline AI
Cursor配置
- 编辑
~/.cursor/mcp.json文件:
{
"mcpServers": {
"flutter-inspector": {
"command": "[CLONED_MCP_FLUTTER_PATH]/mcp_server_dart/build/flutter_inspector_mcp",
"args": [
"--dart-vm-host=localhost",
"--dart-vm-port=8181",
"--no-resources",
"--images",
"--dynamics"
],
"env": {},
"disabled": false
}
}
}
- 重启Cursor
- 使用Cmd+L(macOS)打开Agent面板测试功能
Claude Desktop配置
- 编辑配置文件(通常位于
~/Library/Application Support/Claude/claude_desktop_config.json)
{
"mcpServers": {
"flutter-inspector": {
"command": "[CLONED_MCP_FLUTTER_PATH]/mcp_server_dart/build/flutter_inspector_mcp",
"args": [
"--dart-vm-host=localhost",
"--dart-vm-port=8181",
"--resources",
"--images",
"--dynamics"
],
"env": {},
"disabled": false
}
}
}
- 重启Claude Desktop
动态工具注册功能
MCP Flutter Inspector v2.2.0引入了动态工具注册功能,允许:
- 运行时添加自定义工具
- 支持热重载
- 暴露应用特定的调试工具
示例代码
final customTool = MCPCallEntry.tool(
handler: (request) {
final name = request['name'] ?? 'World';
return MCPCallResult(
message: 'Hello, $name!',
parameters: {'greeting': 'Hello, $name!'},
);
},
definition: MCPToolDefinition(
name: 'say_hello',
description: 'Say hello to someone',
inputSchema: {
'type': 'object',
'properties': {
'name': {
'type': 'string',
'description': 'Name to greet',
},
},
},
),
);
await MCPToolkitBinding.instance.addEntries(entries: {customTool});
验证安装
完成安装后,可以通过以下方式验证:
- 确认Flutter应用以指定参数运行
- 确认AI助手已重启
- 尝试以下命令:
- "列出我的Flutter应用中的所有可用工具"
- "获取应用截图"
- "获取运行时错误"
常见问题解决
-
连接问题:
- 检查Flutter应用是否以正确的端口运行
- 验证AI工具的MCP服务器配置
-
MCP服务器未找到:
- 确认可执行文件路径正确
- 确保
make install成功执行
-
权限问题:
- 检查文件权限
- 确保可执行文件有执行权限
-
工具不可用:
- 确认AI助手已重启
- 检查配置中的
disabled标志
-
动态工具不显示:
- 确认
mcp_toolkit正确初始化 - 使用
listClientToolsAndResources验证注册 - 热重载Flutter应用
- 确认
命令行参数参考
MCP服务器支持以下参数:
--dart-vm-host:Dart VM连接主机(默认:localhost)--dart-vm-port:Dart VM连接端口(默认:8181)--resources:启用资源支持--no-resources:禁用资源支持--images:启用图片支持--dumps:启用转储支持--dynamics:启用动态工具注册--log-level:日志级别(默认:info)--environment:环境(默认:production)
通过本文的详细指导,您应该能够成功为MCP Flutter项目配置LLM环境,充分利用AI助手增强您的Flutter开发体验。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
暂无简介
Dart
760
182
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
569
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
160
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
169
53
Ascend Extension for PyTorch
Python
321
373
React Native鸿蒙化仓库
JavaScript
301
347