SGLC: 激光雷达SLAM的语义图引导全闭环框架
2025-04-18 05:28:14作者:庞眉杨Will
1. 项目介绍
SGLC(Semantic Graph-Guided Coarse-Fine-Refine Full Loop Closing for LiDAR SLAM)是一个基于语义图引导的激光雷达SLAM(同步定位与地图构建)闭环检测框架。该框架通过构建前景实例的语义图,并生成同时考虑语义图拓扑特性和背景外观特性的激光雷达扫描描述符,从而实现鲁棒的闭环检测和6自由度位姿估计。
2. 项目快速启动
环境准备
在开始之前,请确保您的系统中安装了以下依赖:
- Ubuntu 20.04 或 Ubuntu 18.04
- Eigen (3.3.7)
- PCL (1.10)
- Ceres-solver (2.1.0)
您需要根据官方指导安装这些库。
克隆项目
git clone git@github.com:nubot-nudt/SGLC.git
编译项目
mkdir build
cd build
cmake ..
make -j8
闭环检测
编辑 config/config_kitti_graph.yaml 文件,设置以下参数:
eval_seq:
cloud_path: "xx/kitti/sequences/08/velodyne/"
label_path: "xx/SegNet4D_predicitions/kitti/sequences/08/predictions/"
pairs_file: "../loop_data/pairs/pairs_kitti/neg_100/08.txt"
out_file: "../out/kitti/08.txt"
然后运行以下命令进行闭环检测:
cd /SGLC/bin
./eval_lcd_seq
输出文件将位于 SGLC/out/ 目录下。
位姿估计
同样,编辑 config/config_kitti_graph.yaml 文件,设置以下参数:
eval_poses:
cloud_path: "xx/kitti/sequences/08/velodyne/"
label_path: "xx/SegNet4D_predicitions/kitti/sequences/08/predictions/"
loop_poses_file: "xx/loop_data/loop/loop_distance4/08.txt"
out_file: "../out/kitti/loop_distance4_08.txt"
然后运行以下命令进行位姿估计:
cd /SGLC/bin
./eval_loop_poses_pair
3. 应用案例和最佳实践
SGLC框架已经在多个数据集上进行了测试,包括KITTI、KITTI360、Ford campus和Apollo。以下是使用SGLC的一些最佳实践:
- 在使用不同数据集时,确保根据数据集特点调整配置文件中的参数。
- 对于闭环检测,可以尝试不同的距离和重叠标准来优化性能。
- 在位姿估计阶段,通过调整粗到细到精的注册方案参数,可以进一步提高位姿估计的准确性。
4. 典型生态项目
SGLC框架依赖于多个开源项目,以下是一些典型的生态项目:
- SSC: Semantic Scan Context for Large-Scale Place Recognition
- STD: Stable Triangle Descriptor for 3D place recognition
- KISS-ICP: In Defense of Point-to-Point ICP Simple, Accurate, and Robust Registration If Done the Right Way
- CVC-Cluster: Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance
通过集成和使用这些项目,SGLC能够提供更加鲁棒和高效的闭环检测能力。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
293
2.62 K
暂无简介
Dart
584
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.28 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
758
72
Ascend Extension for PyTorch
Python
123
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
417
仓颉编程语言运行时与标准库。
Cangjie
130
430