SGLC: 激光雷达SLAM的语义图引导全闭环框架
2025-04-18 08:55:49作者:庞眉杨Will
1. 项目介绍
SGLC(Semantic Graph-Guided Coarse-Fine-Refine Full Loop Closing for LiDAR SLAM)是一个基于语义图引导的激光雷达SLAM(同步定位与地图构建)闭环检测框架。该框架通过构建前景实例的语义图,并生成同时考虑语义图拓扑特性和背景外观特性的激光雷达扫描描述符,从而实现鲁棒的闭环检测和6自由度位姿估计。
2. 项目快速启动
环境准备
在开始之前,请确保您的系统中安装了以下依赖:
- Ubuntu 20.04 或 Ubuntu 18.04
- Eigen (3.3.7)
- PCL (1.10)
- Ceres-solver (2.1.0)
您需要根据官方指导安装这些库。
克隆项目
git clone git@github.com:nubot-nudt/SGLC.git
编译项目
mkdir build
cd build
cmake ..
make -j8
闭环检测
编辑 config/config_kitti_graph.yaml 文件,设置以下参数:
eval_seq:
cloud_path: "xx/kitti/sequences/08/velodyne/"
label_path: "xx/SegNet4D_predicitions/kitti/sequences/08/predictions/"
pairs_file: "../loop_data/pairs/pairs_kitti/neg_100/08.txt"
out_file: "../out/kitti/08.txt"
然后运行以下命令进行闭环检测:
cd /SGLC/bin
./eval_lcd_seq
输出文件将位于 SGLC/out/ 目录下。
位姿估计
同样,编辑 config/config_kitti_graph.yaml 文件,设置以下参数:
eval_poses:
cloud_path: "xx/kitti/sequences/08/velodyne/"
label_path: "xx/SegNet4D_predicitions/kitti/sequences/08/predictions/"
loop_poses_file: "xx/loop_data/loop/loop_distance4/08.txt"
out_file: "../out/kitti/loop_distance4_08.txt"
然后运行以下命令进行位姿估计:
cd /SGLC/bin
./eval_loop_poses_pair
3. 应用案例和最佳实践
SGLC框架已经在多个数据集上进行了测试,包括KITTI、KITTI360、Ford campus和Apollo。以下是使用SGLC的一些最佳实践:
- 在使用不同数据集时,确保根据数据集特点调整配置文件中的参数。
- 对于闭环检测,可以尝试不同的距离和重叠标准来优化性能。
- 在位姿估计阶段,通过调整粗到细到精的注册方案参数,可以进一步提高位姿估计的准确性。
4. 典型生态项目
SGLC框架依赖于多个开源项目,以下是一些典型的生态项目:
- SSC: Semantic Scan Context for Large-Scale Place Recognition
- STD: Stable Triangle Descriptor for 3D place recognition
- KISS-ICP: In Defense of Point-to-Point ICP Simple, Accurate, and Robust Registration If Done the Right Way
- CVC-Cluster: Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance
通过集成和使用这些项目,SGLC能够提供更加鲁棒和高效的闭环检测能力。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249