PyTorch Serve项目:解决Docker容器中GPU无法使用的问题
2025-06-14 21:40:14作者:胡易黎Nicole
问题背景
在使用PyTorch Serve部署深度学习模型时,许多开发者会遇到Docker容器无法正确识别和使用GPU的问题。本文将以一个实际案例为基础,详细介绍如何解决这一问题。
问题现象
开发者在使用自定义Docker镜像部署PyTorch Serve服务时,发现服务虽然能够正常运行,但实际使用的是CPU而非GPU进行计算。从日志中可以看到,系统正确识别了GPU设备(NVIDIA GeForce RTX 3050 Laptop GPU),但模型推理仍然在CPU上执行。
环境配置
硬件配置
- CPU: Ryzen 7 4800H
- GPU: RTX 3050 Mobile GPU
- RAM: 24GB
- 存储: 512GB + 256GB SSD
软件环境
- 操作系统: Windows Sub-System Linux Ubuntu 20.04 (WSL集成)
- Docker: 启用WSL集成
- Python: 3.8.16
- PyTorch Serve: 0.9.0
- Torch: 2.1.2
- Torchvision: 0.16.2
问题分析
从日志中可以观察到几个关键点:
- 系统正确识别了GPU设备
- ONNX运行时显示已启用
- 但实际计算仍发生在CPU上
- 性能指标显示CPU利用率达到100%
这通常表明CUDA运行时与ONNX版本之间存在兼容性问题。
解决方案
1. 检查CUDA与ONNX版本兼容性
经过排查发现,CUDA 12与最新版ONNX运行时存在兼容性问题。解决方案是:
- 降级到CUDA 11.8
- 使用ONNX Runtime GPU 1.15版本
2. 修改Dockerfile
确保Dockerfile中正确安装了CUDA相关依赖:
FROM python:3.8.16-bullseye
RUN apt-get update && apt-get upgrade -y
RUN apt-get install -y openjdk-11-jre && apt-get clean
RUN useradd -m model-server
ENV JAVA_HOME /usr/lib/jvm/java-11-openjdk-amd64
ADD requirements.txt .
RUN pip install -r requirements.txt
ADD start.sh config.properties service/
ADD model-store service/model-store/
WORKDIR /service/
RUN chmod +x /service/start.sh \
&& chown -R model-server /service
RUN chown -R model-server /service/model-store
USER model-server
ENTRYPOINT [ "/service/start.sh" ]
CMD [ "serve" ]
3. 调整requirements.txt
确保requirements.txt中包含正确的依赖版本:
imutils
torch
torchvision
onnxruntime-gpu==1.15
onnx
pyaml
torchserve
grpcio
opencv-python
scipy
torch-model-archiver
matplotlib
nvgpu
4. 模型处理
使用torch-model-archiver正确打包ONNX模型:
torch-model-archiver --model-name FaceRecognition \
--version 1.0 \
--serialized-file ./resnet_34.onnx \
--extra-files ./MyHandler.py \
--handler my_handler.py \
--export-path model-store -f
自定义Handler实现
对于ONNX模型,需要实现自定义Handler。以下是YOLOv8模型的Handler示例:
import logging
import onnxruntime
import torch
import cv2
import numpy as np
from PIL import Image
import os
import io
import urllib.request
from ts.torch_handler.base_handler import BaseHandler
from util_v8 import *
class FaceDetection(BaseHandler):
def __init__(self):
self.session = None
self.providers = ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider']
self.img = None
self.blob = None
def initialize(self, context):
self._context = context
self.manifest = context.manifest
properties = context.system_properties
model_dir = properties.get("model_dir")
serialized_file = self.manifest['model']['serializedFile']
model_file_path = os.path.join(model_dir, serialized_file)
sess_options = onnxruntime.SessionOptions()
self.session = onnxruntime.InferenceSession(model_file_path, sess_options=sess_options, providers=['CPUExecutionProvider'])
def preprocess(self, data):
data_get = data[0].get("data") or data[0].get("body")
if isinstance(data_get, str):
req = urllib.request.urlopen(data_get)
image = Image.open(io.BytesIO(req.read()))
else:
byte_data = io.BytesIO(data_get)
image = Image.open(byte_data)
raw_data = np.array(image)
self.img = raw_data
img = cv2.cvtColor(raw_data, cv2.COLOR_RGB2BGR)
im = pre_process(img)
return im.detach().numpy()
def inference(self, blob):
self.blob = blob
outputs = self.session.run(None, {self.session.get_inputs()[0].name: blob})
return outputs[0]
def postprocess(self, preds):
res = []
preds = non_max_suppression(torch.from_numpy(np.asarray(preds))[0]
bbox = scale_boxes([640, 640], preds[:, :4], self.img.shape).round().detach().numpy()
score = preds[:, 4].detach().numpy()
cls = preds[:, 5].detach().numpy()
res.append({"output": preds.tolist(), "bbox": bbox.tolist(), "label": cls.tolist(), "score": score.tolist()})
return [res]
运行容器
确保使用--gpus参数运行容器:
docker run --rm -it -d --gpus all -p 8090:8080 -p 8091:8081 api_lanc
验证GPU使用
成功配置后,可以在日志中看到以下关键信息:
- GPU利用率指标出现
- 推理速度显著提升
- CPU利用率降低
总结
PyTorch Serve在Docker容器中使用GPU时,需要注意以下几点:
- CUDA版本与ONNX运行时的兼容性
- 正确的Docker构建和运行参数
- 适当的Handler实现
- 版本匹配的依赖关系
通过上述步骤,可以确保PyTorch Serve服务能够充分利用GPU资源,提高模型推理效率。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219