PyTorch Serve项目:解决Docker容器中GPU无法使用的问题
2025-06-14 17:58:58作者:胡易黎Nicole
问题背景
在使用PyTorch Serve部署深度学习模型时,许多开发者会遇到Docker容器无法正确识别和使用GPU的问题。本文将以一个实际案例为基础,详细介绍如何解决这一问题。
问题现象
开发者在使用自定义Docker镜像部署PyTorch Serve服务时,发现服务虽然能够正常运行,但实际使用的是CPU而非GPU进行计算。从日志中可以看到,系统正确识别了GPU设备(NVIDIA GeForce RTX 3050 Laptop GPU),但模型推理仍然在CPU上执行。
环境配置
硬件配置
- CPU: Ryzen 7 4800H
- GPU: RTX 3050 Mobile GPU
- RAM: 24GB
- 存储: 512GB + 256GB SSD
软件环境
- 操作系统: Windows Sub-System Linux Ubuntu 20.04 (WSL集成)
- Docker: 启用WSL集成
- Python: 3.8.16
- PyTorch Serve: 0.9.0
- Torch: 2.1.2
- Torchvision: 0.16.2
问题分析
从日志中可以观察到几个关键点:
- 系统正确识别了GPU设备
- ONNX运行时显示已启用
- 但实际计算仍发生在CPU上
- 性能指标显示CPU利用率达到100%
这通常表明CUDA运行时与ONNX版本之间存在兼容性问题。
解决方案
1. 检查CUDA与ONNX版本兼容性
经过排查发现,CUDA 12与最新版ONNX运行时存在兼容性问题。解决方案是:
- 降级到CUDA 11.8
- 使用ONNX Runtime GPU 1.15版本
2. 修改Dockerfile
确保Dockerfile中正确安装了CUDA相关依赖:
FROM python:3.8.16-bullseye
RUN apt-get update && apt-get upgrade -y
RUN apt-get install -y openjdk-11-jre && apt-get clean
RUN useradd -m model-server
ENV JAVA_HOME /usr/lib/jvm/java-11-openjdk-amd64
ADD requirements.txt .
RUN pip install -r requirements.txt
ADD start.sh config.properties service/
ADD model-store service/model-store/
WORKDIR /service/
RUN chmod +x /service/start.sh \
&& chown -R model-server /service
RUN chown -R model-server /service/model-store
USER model-server
ENTRYPOINT [ "/service/start.sh" ]
CMD [ "serve" ]
3. 调整requirements.txt
确保requirements.txt中包含正确的依赖版本:
imutils
torch
torchvision
onnxruntime-gpu==1.15
onnx
pyaml
torchserve
grpcio
opencv-python
scipy
torch-model-archiver
matplotlib
nvgpu
4. 模型处理
使用torch-model-archiver正确打包ONNX模型:
torch-model-archiver --model-name FaceRecognition \
--version 1.0 \
--serialized-file ./resnet_34.onnx \
--extra-files ./MyHandler.py \
--handler my_handler.py \
--export-path model-store -f
自定义Handler实现
对于ONNX模型,需要实现自定义Handler。以下是YOLOv8模型的Handler示例:
import logging
import onnxruntime
import torch
import cv2
import numpy as np
from PIL import Image
import os
import io
import urllib.request
from ts.torch_handler.base_handler import BaseHandler
from util_v8 import *
class FaceDetection(BaseHandler):
def __init__(self):
self.session = None
self.providers = ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider']
self.img = None
self.blob = None
def initialize(self, context):
self._context = context
self.manifest = context.manifest
properties = context.system_properties
model_dir = properties.get("model_dir")
serialized_file = self.manifest['model']['serializedFile']
model_file_path = os.path.join(model_dir, serialized_file)
sess_options = onnxruntime.SessionOptions()
self.session = onnxruntime.InferenceSession(model_file_path, sess_options=sess_options, providers=['CPUExecutionProvider'])
def preprocess(self, data):
data_get = data[0].get("data") or data[0].get("body")
if isinstance(data_get, str):
req = urllib.request.urlopen(data_get)
image = Image.open(io.BytesIO(req.read()))
else:
byte_data = io.BytesIO(data_get)
image = Image.open(byte_data)
raw_data = np.array(image)
self.img = raw_data
img = cv2.cvtColor(raw_data, cv2.COLOR_RGB2BGR)
im = pre_process(img)
return im.detach().numpy()
def inference(self, blob):
self.blob = blob
outputs = self.session.run(None, {self.session.get_inputs()[0].name: blob})
return outputs[0]
def postprocess(self, preds):
res = []
preds = non_max_suppression(torch.from_numpy(np.asarray(preds))[0]
bbox = scale_boxes([640, 640], preds[:, :4], self.img.shape).round().detach().numpy()
score = preds[:, 4].detach().numpy()
cls = preds[:, 5].detach().numpy()
res.append({"output": preds.tolist(), "bbox": bbox.tolist(), "label": cls.tolist(), "score": score.tolist()})
return [res]
运行容器
确保使用--gpus参数运行容器:
docker run --rm -it -d --gpus all -p 8090:8080 -p 8091:8081 api_lanc
验证GPU使用
成功配置后,可以在日志中看到以下关键信息:
- GPU利用率指标出现
- 推理速度显著提升
- CPU利用率降低
总结
PyTorch Serve在Docker容器中使用GPU时,需要注意以下几点:
- CUDA版本与ONNX运行时的兼容性
- 正确的Docker构建和运行参数
- 适当的Handler实现
- 版本匹配的依赖关系
通过上述步骤,可以确保PyTorch Serve服务能够充分利用GPU资源,提高模型推理效率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328