首页
/ Langserve项目中的流式API实现问题解析

Langserve项目中的流式API实现问题解析

2025-07-04 06:09:11作者:田桥桑Industrious

在Langserve项目中实现自定义LLM时,开发者可能会遇到流式API返回完整响应而非逐token输出的问题。本文将深入分析该问题的成因及解决方案。

问题现象

当开发者使用Langserve框架构建自定义LLM服务时,发现stream API并未按预期实现真正的流式输出,而是在处理完成后一次性返回全部内容。这与期望的逐token输出行为不符。

根本原因分析

该问题的核心在于Langserve框架的异步处理机制。Langserve默认使用异步流式传输(async streaming),而开发者最初仅实现了同步流式传输(sync streaming)方法_stream,没有实现对应的异步方法_astream

解决方案

要解决这个问题,开发者需要实现异步流式处理方法_astream。以下是关键实现要点:

  1. 异步方法实现:在自定义LLM类中添加_astream方法,使用async/await语法处理异步请求

  2. 响应处理:与同步方法类似,但需要使用异步迭代器处理响应流

  3. 回调管理:确保正确调用异步回调管理器的方法

实现示例

async def _astream(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any
) -> AsyncIterator[GenerationChunk]:
    request = self._default_params
    request["question"] = prompt
    request["stream"] = True
    request.update(kwargs)
    
    async with aiohttp.ClientSession() as session:
        async with session.post(self.endpoint, json=request) as response:
            async for chunk in response.content:
                chunk = chunk.decode("utf-8").strip("\r\n")
                # 处理chunk逻辑...
                if run_manager:
                    await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
                yield chunk

测试验证

实现后,应使用异步方式测试流式输出:

async def test_streaming():
    input = "测试输入"
    async for chunk in chain.astream(input=input):
        print(chunk, end="", flush=True)

总结

在Langserve项目中实现真正的流式API输出,关键在于理解框架的异步处理机制。开发者需要同时实现同步和异步流式处理方法,或者至少实现异步方法以确保与Langserve的默认行为兼容。通过正确实现这些方法,可以确保API按预期逐token输出响应内容。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
62
95
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133