Langserve项目中的流式API实现问题解析
2025-07-04 14:47:12作者:田桥桑Industrious
在Langserve项目中实现自定义LLM时,开发者可能会遇到流式API返回完整响应而非逐token输出的问题。本文将深入分析该问题的成因及解决方案。
问题现象
当开发者使用Langserve框架构建自定义LLM服务时,发现stream API并未按预期实现真正的流式输出,而是在处理完成后一次性返回全部内容。这与期望的逐token输出行为不符。
根本原因分析
该问题的核心在于Langserve框架的异步处理机制。Langserve默认使用异步流式传输(async streaming),而开发者最初仅实现了同步流式传输(sync streaming)方法_stream
,没有实现对应的异步方法_astream
。
解决方案
要解决这个问题,开发者需要实现异步流式处理方法_astream
。以下是关键实现要点:
-
异步方法实现:在自定义LLM类中添加
_astream
方法,使用async/await
语法处理异步请求 -
响应处理:与同步方法类似,但需要使用异步迭代器处理响应流
-
回调管理:确保正确调用异步回调管理器的方法
实现示例
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any
) -> AsyncIterator[GenerationChunk]:
request = self._default_params
request["question"] = prompt
request["stream"] = True
request.update(kwargs)
async with aiohttp.ClientSession() as session:
async with session.post(self.endpoint, json=request) as response:
async for chunk in response.content:
chunk = chunk.decode("utf-8").strip("\r\n")
# 处理chunk逻辑...
if run_manager:
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
测试验证
实现后,应使用异步方式测试流式输出:
async def test_streaming():
input = "测试输入"
async for chunk in chain.astream(input=input):
print(chunk, end="", flush=True)
总结
在Langserve项目中实现真正的流式API输出,关键在于理解框架的异步处理机制。开发者需要同时实现同步和异步流式处理方法,或者至少实现异步方法以确保与Langserve的默认行为兼容。通过正确实现这些方法,可以确保API按预期逐token输出响应内容。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
509

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
257
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5