开源项目keras-ocr安装与使用指南
目录结构及介绍
keras-ocr 是一个基于Keras的光学字符识别(OCR)工具包,它包含了先进的文本检测器和识别模型。以下是对该开源项目的主要目录结构及其功能的介绍:
-
keras_ocr:主要模块所在位置,包括了detector,recognizer等子模块。detector.py: 文本检测器实现,使用CRAFT模型进行文本框定位。recognizer.py: 文字识别器实现,利用CRNN模型对检测出的文本区域进行识别。- 其他相关辅助函数和类定义。
-
scripts:包含脚本用于生成合成数据、训练模型、评估性能等。 -
tests:单元测试和集成测试代码存放位置。 -
dockerignore,gitattributes,gitignore: 版本控制排除规则。 -
.github:GitHub工作流自动化配置。 -
docs:项目文档和说明文件。 -
LICENSE: 许可证信息,MIT许可。 -
Makefile: 自动化构建和部署任务。 -
pyproject.toml,setup.cfg: 构建和打包Python项目所需配置。 -
readthedocs.yaml: 文档构建配置。 -
Dockerfile: Docker容器镜像构建文件。 -
README.md: 项目简介和快速上手指南。
启动文件介绍
在keras-ocr中,没有特定意义上的"主入口"或"启动文件",但使用时通常从导入核心模块开始。其中最重要的部分是pipeline.Pipeline(),这是一个集成了文本检测和识别过程的完整解决方案,通过下面的方式可以创建并使用:
import keras_ocr
# 初始化管道,自动下载预训练权重
pipeline = keras_ocr.pipeline.Pipeline()
# 加载图像
images = [plt.imread(image_path)]
# 对图像应用管道以得到文字识别结果
prediction_groups = pipeline.recognize(images)
for img_num, (word_box_list, recognized_text_list) in enumerate(prediction_groups):
print(f"Image {img_num}:")
for box, text in zip(word_box_list, recognized_text_list):
print(f"Detected text: '{text}', Bounding Box: {box}")
配置文件介绍
keras-ocr并未提供典型的配置文件供用户直接修改参数(如.yaml或.json),大多数配置是在调用各个功能时作为参数传递的。例如,在初始化Pipeline对象时,可以通过参数来调整行为,比如改变图像缩放比例(scale)来影响识别精度和速度:
# 使用自定义放大比例初始化管道
pipeline = keras_ocr.pipeline.Pipeline(scale=3)
# ...后续操作...
当涉及到训练自己的模型或微调现有模型时,更复杂的配置将通过函数调用中的参数设置来进行,这些细节可以在项目文档中找到。对于高级定制需求,开发者可能需要编辑源代码或在脚本中设定环境变量来达到目的。
以上概述了keras-ocr项目的基本目录结构、启动流程以及一些重要的配置方面,希望这能够帮助新用户快速了解如何开始使用此强大的OCR工具包。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00