开源项目keras-ocr安装与使用指南
目录结构及介绍
keras-ocr
是一个基于Keras的光学字符识别(OCR)工具包,它包含了先进的文本检测器和识别模型。以下是对该开源项目的主要目录结构及其功能的介绍:
-
keras_ocr
:主要模块所在位置,包括了detector
,recognizer
等子模块。detector.py
: 文本检测器实现,使用CRAFT模型进行文本框定位。recognizer.py
: 文字识别器实现,利用CRNN模型对检测出的文本区域进行识别。- 其他相关辅助函数和类定义。
-
scripts
:包含脚本用于生成合成数据、训练模型、评估性能等。 -
tests
:单元测试和集成测试代码存放位置。 -
dockerignore
,gitattributes
,gitignore
: 版本控制排除规则。 -
.github
:GitHub工作流自动化配置。 -
docs
:项目文档和说明文件。 -
LICENSE
: 许可证信息,MIT许可。 -
Makefile
: 自动化构建和部署任务。 -
pyproject.toml
,setup.cfg
: 构建和打包Python项目所需配置。 -
readthedocs.yaml
: 文档构建配置。 -
Dockerfile
: Docker容器镜像构建文件。 -
README.md
: 项目简介和快速上手指南。
启动文件介绍
在keras-ocr
中,没有特定意义上的"主入口"或"启动文件",但使用时通常从导入核心模块开始。其中最重要的部分是pipeline.Pipeline()
,这是一个集成了文本检测和识别过程的完整解决方案,通过下面的方式可以创建并使用:
import keras_ocr
# 初始化管道,自动下载预训练权重
pipeline = keras_ocr.pipeline.Pipeline()
# 加载图像
images = [plt.imread(image_path)]
# 对图像应用管道以得到文字识别结果
prediction_groups = pipeline.recognize(images)
for img_num, (word_box_list, recognized_text_list) in enumerate(prediction_groups):
print(f"Image {img_num}:")
for box, text in zip(word_box_list, recognized_text_list):
print(f"Detected text: '{text}', Bounding Box: {box}")
配置文件介绍
keras-ocr
并未提供典型的配置文件供用户直接修改参数(如.yaml
或.json
),大多数配置是在调用各个功能时作为参数传递的。例如,在初始化Pipeline
对象时,可以通过参数来调整行为,比如改变图像缩放比例(scale
)来影响识别精度和速度:
# 使用自定义放大比例初始化管道
pipeline = keras_ocr.pipeline.Pipeline(scale=3)
# ...后续操作...
当涉及到训练自己的模型或微调现有模型时,更复杂的配置将通过函数调用中的参数设置来进行,这些细节可以在项目文档中找到。对于高级定制需求,开发者可能需要编辑源代码或在脚本中设定环境变量来达到目的。
以上概述了keras-ocr
项目的基本目录结构、启动流程以及一些重要的配置方面,希望这能够帮助新用户快速了解如何开始使用此强大的OCR工具包。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









