T-Rex2模型训练过程的技术解析
训练流程概述
T-Rex2作为目标检测领域的重要模型,其训练过程采用了分阶段策略。模型首先专注于文本提示分支的训练,待该部分收敛后再同时训练文本和视觉提示分支。这种分阶段方法源于文本提示分支需要更多数据和更长时间才能达到理想性能的实际情况。
负样本采样机制
在视觉提示训练阶段,T-Rex2采用当前mini-batch内的样本作为负样本来源。具体实现中,模型仅从当前GPU处理的批次数据中采样负提示,这种设计虽然简单但有效。值得注意的是,研究团队指出采用类似DINOv模型中的跨GPU负样本采样策略可能会带来额外的性能提升。
损失函数设计
T-Rex2采用了Sigmoid Focal Loss作为分类损失函数,这种损失函数最初在RetinaNet中提出,特别适合处理类别不平衡问题。与传统的交叉熵损失相比,Focal Loss通过引入调节因子(γ)和平衡参数(α),能够有效降低易分类样本的权重,使模型更关注难样本。
在实现细节上,模型处理视觉提示嵌入(1×C维度)和检测查询(900×C维度)时,不进行归一化处理,而是直接计算它们的点积得到最终logits(900×1)。这些logits经过sigmoid函数转换后,输出值落在0到1之间,作为最终的检测得分。
技术实现要点
-
特征处理:不同于一些需要归一化嵌入向量的方法,T-Rex2直接使用原始特征向量进行相似度计算,简化了计算流程。
-
多标签处理:Sigmoid Focal Loss能够处理多类别情况,每个预测框可以对应0、1、2等多个类别标签,这增强了模型在多类别检测任务中的灵活性。
-
训练效率:通过分阶段训练策略,模型能够更高效地利用计算资源,先确保文本提示分支的稳定性,再优化视觉提示性能。
这种训练架构设计使得T-Rex2在保持高效训练的同时,能够获得优异的检测性能,特别是在处理多模态提示(文本+视觉)的场景下表现出色。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00