creme-ml项目构建问题分析:Rust扩展缺失Cargo.toml文件
2025-06-08 03:35:49作者:郜逊炳
在creme-ml项目的0.21.0版本中,用户发现了一个关键的构建问题:当尝试从PyPI的源码分发(sdist)构建项目时,构建过程会失败,提示找不到Rust扩展所需的Cargo.toml文件。这个问题值得深入分析,因为它涉及到Python项目中混合使用Rust扩展时的构建机制。
问题本质
问题的核心在于构建系统无法定位到Rust扩展所需的构建配置文件。具体表现为:
- 从PyPI下载的源码包(sdist)构建失败
- 错误信息明确指出找不到river.stats._rust_stats扩展的Cargo.toml文件
- 但从GitHub仓库直接构建却能成功
这种差异表明源码分发包中缺少了关键文件,而GitHub仓库中这些文件是存在的。
根本原因
经过分析,这个问题源于项目构建系统的配置变更。creme-ml项目最近从传统的setuptools构建系统迁移到了Poetry构建系统。在这个过程中,一个关键细节被忽略了:
传统的setuptools构建系统会读取MANIFEST.in文件来确定哪些额外文件需要包含在源码分发包中。而Poetry构建系统则完全依赖pyproject.toml文件来管理打包过程。
在creme-ml项目中,MANIFEST.in文件明确列出了需要包含的Cargo.toml文件和其他Rust源码文件,但这些配置没有被迁移到pyproject.toml中。因此,当使用Poetry构建源码分发包时,这些关键文件被遗漏了。
解决方案
修复这个问题的正确方法是:
- 将MANIFEST.in中的所有必要文件包含规则迁移到pyproject.toml中
- 确保所有Rust扩展所需的文件(Cargo.toml和rust_src目录下的文件)都被正确包含
- 测试从源码分发包的构建过程
这种迁移确保了构建系统变更不会影响项目的可构建性,特别是对于包含Rust扩展的复杂Python项目。
经验教训
这个案例给我们提供了几个重要的经验:
- 在迁移构建系统时,必须全面检查所有构建依赖项
- 混合语言项目(Python+Rust)需要特别注意非Python文件的包含
- 源码分发包的构建测试应该成为持续集成流程的一部分
- 构建系统变更可能引入微妙的兼容性问题,需要仔细验证
对于开发者来说,理解不同构建系统之间的差异至关重要,特别是在项目包含多种语言组件时。这个案例也展示了开源社区如何快速响应和解决问题,确保项目的可维护性和用户体验。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Visual Studio 2015企业版中文版下载安装完全指南 - 专业开发工具必备资源 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 开源电子设计自动化利器:KiCad EDA全方位使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CVE-2024-38077伪代码修复版EXP资源详解:Windows远程桌面授权服务问题利用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
301
2.65 K
Ascend Extension for PyTorch
Python
130
152
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
457
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
610
196
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
613
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.42 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205