creme-ml项目构建问题分析:Rust扩展缺失Cargo.toml文件
2025-06-08 00:55:32作者:郜逊炳
在creme-ml项目的0.21.0版本中,用户发现了一个关键的构建问题:当尝试从PyPI的源码分发(sdist)构建项目时,构建过程会失败,提示找不到Rust扩展所需的Cargo.toml文件。这个问题值得深入分析,因为它涉及到Python项目中混合使用Rust扩展时的构建机制。
问题本质
问题的核心在于构建系统无法定位到Rust扩展所需的构建配置文件。具体表现为:
- 从PyPI下载的源码包(sdist)构建失败
- 错误信息明确指出找不到river.stats._rust_stats扩展的Cargo.toml文件
- 但从GitHub仓库直接构建却能成功
这种差异表明源码分发包中缺少了关键文件,而GitHub仓库中这些文件是存在的。
根本原因
经过分析,这个问题源于项目构建系统的配置变更。creme-ml项目最近从传统的setuptools构建系统迁移到了Poetry构建系统。在这个过程中,一个关键细节被忽略了:
传统的setuptools构建系统会读取MANIFEST.in文件来确定哪些额外文件需要包含在源码分发包中。而Poetry构建系统则完全依赖pyproject.toml文件来管理打包过程。
在creme-ml项目中,MANIFEST.in文件明确列出了需要包含的Cargo.toml文件和其他Rust源码文件,但这些配置没有被迁移到pyproject.toml中。因此,当使用Poetry构建源码分发包时,这些关键文件被遗漏了。
解决方案
修复这个问题的正确方法是:
- 将MANIFEST.in中的所有必要文件包含规则迁移到pyproject.toml中
- 确保所有Rust扩展所需的文件(Cargo.toml和rust_src目录下的文件)都被正确包含
- 测试从源码分发包的构建过程
这种迁移确保了构建系统变更不会影响项目的可构建性,特别是对于包含Rust扩展的复杂Python项目。
经验教训
这个案例给我们提供了几个重要的经验:
- 在迁移构建系统时,必须全面检查所有构建依赖项
- 混合语言项目(Python+Rust)需要特别注意非Python文件的包含
- 源码分发包的构建测试应该成为持续集成流程的一部分
- 构建系统变更可能引入微妙的兼容性问题,需要仔细验证
对于开发者来说,理解不同构建系统之间的差异至关重要,特别是在项目包含多种语言组件时。这个案例也展示了开源社区如何快速响应和解决问题,确保项目的可维护性和用户体验。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
646
149
Ascend Extension for PyTorch
Python
207
220
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
286
React Native鸿蒙化仓库
JavaScript
250
318
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873