SemGCN 的安装和配置教程
2025-05-20 02:39:47作者:翟江哲Frasier
项目基础介绍
SemGCN 是一个基于图卷积神经网络的开源项目,主要用于3D人体姿态回归任务。该项目是对论文 "Semantic Graph Convolutional Networks for 3D Human Pose Regression" 的PyTorch实现。通过使用图结构的数据进行回归任务,该项目能够预测3D人体姿态。
编程语言
主要使用的编程语言是 Python。
关键技术和框架
- 图卷积神经网络(GCN):用于处理图结构数据的一种神经网络架构。
- PyTorch:一个流行的开源机器学习库,基于 Torch,用于应用如计算机视觉和自然语言处理等领域的深度学习。
准备工作
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统:Ubuntu 16.04
- Python 版本:Python 2.7
- GPU:NVIDIA GPU(用于训练和测试)
- PyTorch:版本至少为 1.1.0,具体安装根据 CUDA 版本进行
安装步骤
-
克隆项目仓库到本地:
git clone git@github.com:garyzhao/SemGCN.git cd SemGCN -
安装项目依赖:
pip install -r requirements.txt -
准备数据集: 根据项目中的
data/README.md指导,设置 Human3.6M 数据集及2D检测结果的准备。 -
评估预训练模型: 以下命令可用于评估预训练模型。将预训练模型文件放在项目根目录下的
checkpoint文件夹中。- 评估 Martinez 等人的模型:
python main_linear.py --evaluate checkpoint/pretrained/ckpt_linear.pth.tar - 评估不带非局部块的 SemGCN 模型:
python main_gcn.py --evaluate checkpoint/pretrained/ckpt_semgcn.pth.tar - 评估带非局部块的 SemGCN 模型:
python main_gcn.py --non_local --evaluate checkpoint/pretrained/ckpt_semgcn_nonlocal.pth.tar
- 评估 Martinez 等人的模型:
-
从头开始训练模型: 若要重现预训练模型的结果,运行以下命令:
- 对于 Martinez 等人的模型:
python main_linear.py - 对于不带非局部块的 SemGCN 模型:
python main_gcn.py --epochs 50 - 对于带非局部块的 SemGCN 模型:
python main_gcn.py --non_local --epochs 30
- 对于 Martinez 等人的模型:
-
可视化模型预测: 通过以下命令可以生成模型预测的可视化结果:
python viz.py --architecture gcn --non_local --evaluate checkpoint/pretrained/ckpt_semgcn_nonlocal.pth.tar --viz_subject S11 --viz_action Walking --viz_camera 0 --viz_output output.gif --viz_size 3 --viz_downsample 2 --viz_limit 60
请按照以上步骤操作,顺利完成 SemGCN 的安装和配置。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
89
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
337
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
437
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19