VLMEvalKit项目中MMT-Bench评估问题的分析与解决
2025-07-03 16:56:01作者:翟萌耘Ralph
问题背景
在VLMEvalKit项目中使用MMT-Bench_VAL_MI数据集进行评估时,部分用户遇到了两个关键问题:数据类型排序错误和数据集内容不一致的断言错误。这些问题影响了评估流程的正常执行。
问题分析
数据类型排序错误
第一个错误表现为在尝试对能力列表进行排序时,系统报出"TypeError: '<' not supported between instances of 'float' and 'str'"错误。经分析,这是由于MMT-Bench_VAL_MI.tsv数据文件中存在解码问题,导致某些能力字段被错误解析为NaN(浮点类型),而其他字段为字符串类型。
数据集内容不一致
第二个错误发生在断言检查阶段,系统发现评估文件中的问题描述与元数据中的问题描述存在差异。具体表现为特殊字符"x0008"出现在问题文本中,而元数据中则没有这个字符。
解决方案
针对上述问题,项目维护者提供了以下解决方案:
-
数据文件完整性检查:建议用户重新下载MMT-Bench_VAL_MI.tsv文件,确保文件完整且未被损坏。
-
断言检查优化:在最新版本的主分支中,项目团队已经移除了可能导致问题的断言检查,解决了特殊字符引起的不一致问题。
-
数据类型处理:虽然数据文件中存在解码问题,但这不会影响程序的正常运行,系统能够正确处理这些异常情况。
MMT-Bench数据集说明
MMT-Bench是VLMEvalKit项目中的一个重要评估基准,包含多个变体:
- MMT-Bench_VAL:官方排行榜采用的版本,包含验证集数据
- MMT-Bench_ALL:包含测试集和验证集的完整数据
- MMT-Bench_VAL_MI:保持原始多图像输入的版本
- 标准MMT-Bench_VAL:将多图像拼接为单一图像的版本
其中,MI版本(Multi-Image)专门用于处理多图像输入场景,保留了原始的多图像输入格式,而非MI版本则将所有相关图像拼接为单一图像进行处理。
最佳实践建议
- 始终使用项目最新版本,以获得最稳定的评估体验
- 下载数据集后,建议进行完整性检查
- 对于多图像评估任务,根据模型特性选择合适的MI或非MI版本
- 遇到评估问题时,可先尝试重新下载数据集
通过以上分析和解决方案,用户应该能够顺利地在VLMEvalKit项目中使用MMT-Bench进行模型评估工作。项目团队将持续优化评估流程,提升用户体验。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
235
2.34 K

仓颉编译器源码及 cjdb 调试工具。
C++
113
80

暂无简介
Dart
537
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
994
588

仓颉编程语言测试用例。
Cangjie
34
64

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
650