Elastic 项目技术文档
2024-12-29 04:56:29作者:宣利权Counsellor
1. 安装指南
在开始使用 Elastic 项目之前,您需要确保已经安装了 Elasticsearch。Elastic 项目是一个 Elasticsearch 的 Go 语言客户端,因此需要与 Elasticsearch 服务器进行交互。
使用 Go 模块安装
为了使用 Elastic,推荐使用 Go 模块进行依赖管理。以下是如何使用 Go 模块安装 Elastic 的步骤:
- 确保您的 Go 环境配置了模块支持(Go 1.11 或更高版本)。
- 在您的项目目录中,运行
go mod init <module-name>初始化一个新的模块。 - 使用以下命令安装 Elastic:
go get github.com/olivere/elastic/v7
确保选择与您的 Elasticsearch 服务器版本兼容的 Elastic 版本。
2. 项目的使用说明
Elastic 项目提供了丰富的 API,用于与 Elasticsearch 交互。以下是一个简单的使用示例:
创建客户端
首先,您需要创建一个 Elasticsearch 客户端:
package main
import (
"github.com/olivere/elastic/v7"
"log"
)
func main() {
// 创建一个 Elasticsearch 客户端
client, err := elastic.NewClient(elastic.SetURL("http://127.0.0.1:9200"))
if err != nil {
log.Fatalf("Error creating the client: %v", err)
}
// ... 使用客户端进行操作
}
索引文档
创建索引并添加文档:
// 索引一个文档
doc := map[string]interface{}{
"name": "John Doe",
"email": "john@example.com",
"age": 28,
}
// 使用 Index 方法添加文档
indexName := "users"
_, err = client.Index().Index(indexName).BodyJson(doc).Do(context.Background())
if err != nil {
log.Fatalf("Error indexing document: %v", err)
}
搜索文档
执行搜索操作:
// 创建一个搜索请求
searchResult, err := client.Search().Index(indexName).Query(elastic.NewMatchQuery("name", "John")).Do(context.Background())
if err != nil {
log.Fatalf("Error searching: %v", err)
}
// ... 处理搜索结果
更多详细的示例和用法,请参考项目 Wiki。
3. 项目 API 使用文档
Elastic 项目支持多种 Elasticsearch API,包括:
- 文档 API:索引、获取、删除、更新等操作。
- 搜索 API:包括搜索、搜索模板、多搜索等。
- 聚合 API:支持多种聚合类型,如度量聚合、桶聚合等。
以下是一些关键 API 的简要描述:
文档 API
- Index API:用于在 Elasticsearch 中创建或更新文档。
- Get API:用于获取指定索引中的文档。
- Delete API:用于删除指定索引中的文档。
- Update API:用于更新现有文档的内容。
搜索 API
- Search API:用于执行搜索请求。
- Multi Search API:用于同时执行多个搜索请求。
聚合 API
- Metrics Aggregations:计算文档数据的统计信息。
- Bucket Aggregations:对数据进行分组并计算每个组的统计信息。
4. 项目安装方式
如前所述,推荐使用 Go 模块来安装和管理 Elastic 项目。以下是如何操作的步骤:
- 初始化 Go 模块(如果尚未初始化):
go mod init <module-name>
- 安装 Elastic:
go get github.com/olivere/elastic/v7
确保选择与您的 Elasticsearch 版本兼容的 Elastic 客户端版本。
通过以上步骤,您可以开始使用 Elastic 项目来与 Elasticsearch 服务器进行交互了。更多详细信息,请参考项目 Wiki。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134