Docusaurus 本地搜索插件使用教程
项目介绍
@easyops-cn/docusaurus-search-local 是一个为 Docusaurus v2/v3 设计的离线/本地搜索插件。它支持多语言,特别优化了对中文的支持。该插件最初基于 cmfcmf/docusaurus-search-local 开发,后来完全使用 TypeScript 重写,并进行了样式优化和测试覆盖。
项目快速启动
安装
首先,通过 npm 或 yarn 安装插件:
npm install --save @easyops-cn/docusaurus-search-local
# 或者
yarn add @easyops-cn/docusaurus-search-local
配置
在 docusaurus.config.js 文件中添加插件配置:
module.exports = {
// 其他配置
themes: [
// 其他主题
[
require.resolve("@easyops-cn/docusaurus-search-local"),
/** @type {import("@easyops-cn/docusaurus-search-local").PluginOptions} */
({
// 配置选项
hashed: true,
language: ["en", "zh"],
}),
],
],
};
运行
完成配置后,运行以下命令启动 Docusaurus 项目:
npm run start
# 或者
yarn start
应用案例和最佳实践
案例一:多语言文档站点
假设你正在开发一个支持中英文的文档站点,使用 @easyops-cn/docusaurus-search-local 插件可以轻松实现本地搜索功能。通过配置 language: ["en", "zh"],用户可以在搜索框中输入中英文关键词,插件会自动匹配并显示相关结果。
案例二:大型文档库
对于拥有大量文档的站点,可以通过设置 maxSearchResults 选项来限制搜索结果的数量,以提高搜索效率。例如:
{
maxSearchResults: 10,
}
最佳实践
- 多语言支持:确保在配置中指定所有支持的语言,以提供全面的搜索体验。
- 性能优化:通过调整
maxSearchResults和searchResultContextMaxLength等参数,优化搜索性能和用户体验。 - 自定义样式:使用 CSS 变量自定义搜索框和结果的样式,以匹配站点的整体设计。
典型生态项目
Docusaurus
@easyops-cn/docusaurus-search-local 是基于 Docusaurus 构建的,Docusaurus 是一个用于构建文档站点的开源框架,支持 React 组件和 Markdown 文件。
Algolia DocSearch
Algolia DocSearch 是一个流行的文档搜索解决方案,但它是基于云服务的。@easyops-cn/docusaurus-search-local 提供了本地化的替代方案,适用于需要离线搜索或对数据隐私有较高要求的项目。
Lunr.js
Lunr.js 是一个轻量级的 JavaScript 搜索引擎库,@easyops-cn/docusaurus-search-local 内部使用了 Lunr.js 来实现文档的索引和搜索功能。
通过以上步骤和案例,你可以快速上手并优化使用 @easyops-cn/docusaurus-search-local 插件,为你的 Docusaurus 文档站点提供强大的本地搜索功能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00