Orval项目中如何处理DELETE请求的204 No Content响应问题
2025-06-17 01:45:42作者:冯梦姬Eddie
问题背景
在使用Orval生成API客户端代码时,开发者可能会遇到一个常见问题:当API规范中定义了DELETE操作返回204 No Content状态码时,生成的fetch客户端代码仍会尝试解析响应体为JSON,导致运行时错误。
问题分析
根据OpenAPI规范,DELETE操作通常会返回204状态码表示成功删除且没有返回内容。然而Orval默认生成的fetch客户端代码会无条件地对所有响应执行res.json()调用,这在响应体为空时会导致SyntaxError: Unexpected end of JSON input错误。
解决方案
1. 自定义fetch实现
最可靠的解决方案是创建自定义fetch函数,正确处理各种响应情况:
const getBody = async <T>(response: Response): Promise<T> => {
const text = await response.text();
if (!text) {
return {} as T;
}
const contentType = response.headers.get("content-type");
if (contentType?.includes("application/json")) {
return JSON.parse(text);
}
return text as unknown as T;
};
export const customFetch = async <T>(
url: string,
options: RequestInit,
): Promise<T> => {
const request = new Request(url, options);
const response = await fetch(request);
const data = await getBody<T>(response);
return { status: response.status, data } as T;
};
2. Orval配置调整
在Orval配置文件中指定使用自定义fetch函数:
{
output: {
client: 'fetch',
override: {
fetch: {
custom: './path/to/custom-fetch.ts'
}
}
}
}
最佳实践建议
-
响应处理一致性:确保API设计遵循RESTful原则,204响应确实不应该包含响应体。
-
错误处理:在自定义fetch中添加适当的错误处理逻辑,考虑网络错误、超时等情况。
-
类型安全:为自定义fetch函数添加完善的TypeScript类型定义,确保生成的代码类型安全。
-
测试覆盖:为各种响应情况(空响应、JSON响应、非JSON响应)编写测试用例。
总结
Orval作为API客户端代码生成工具,默认行为可能无法覆盖所有边缘情况。通过自定义fetch实现,开发者可以灵活处理各种API响应模式,特别是对于204 No Content这类特殊响应。这种方法不仅解决了当前问题,还为未来可能遇到的其他响应处理需求提供了扩展性。
对于团队项目,建议将这种自定义fetch实现作为共享基础设施的一部分,确保所有生成的前端API客户端代码具有一致的行为和错误处理机制。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869