Java-Memshell-Generator项目中的Tomcat Filter内存马注入机制分析
2025-07-07 17:56:22作者:伍霜盼Ellen
背景介绍
Java-Memshell-Generator(简称jMG)是一款用于生成Java内存马的工具,其中包含了对Tomcat Filter类型内存马的注入功能。近期有安全研究人员在使用过程中发现了一些关于Filter注入机制的疑问,本文将深入分析其工作原理。
问题现象
在使用jMG注入Tomcat Filter内存马时,研究人员注意到代码中存在两个现象:
- 注入器代码中没有直接实例化filter对象
- 没有将filter参数显式添加到filterDef对象中
这引发了关于内存马是否成功注入的疑问,但实际上内存马仍然能够正常工作。
技术原理分析
Tomcat Filter注入流程
Tomcat中Filter的注入主要涉及以下几个关键步骤:
- 创建Filter定义(FilterDef)对象
- 将Filter定义添加到Context中
- 创建Filter配置(ApplicationFilterConfig)对象
- 将Filter配置存入Context的filterConfigs映射表
关键代码解析
jMG中的核心注入代码如下:
Constructor[] constructors = Class.forName("org.apache.catalina.core.ApplicationFilterConfig").getDeclaredConstructors();
Object filterConfig = constructors[0].newInstance(context, filterDef);
Map filterConfigs = (Map)getFV(context, "filterConfigs");
filterConfigs.put(filterName, filterConfig);
这段代码通过反射实例化ApplicationFilterConfig对象,并将其存入Context的filterConfigs中。
自动实例化机制
虽然注入代码没有显式创建filter实例,但Tomcat内部有自动实例化机制:
- ApplicationFilterConfig构造函数中会检查filterDef.getFilter()是否为null
- 如果为null,则调用getFilter()方法
- getFilter()方法会根据filterDef中的filterClass自动创建filter实例
// ApplicationFilterConfig.getFilter()关键代码
String filterClass = this.filterDef.getFilterClass();
this.filter = (Filter)this.getInstanceManager().newInstance(filterClass);
请求处理流程
当HTTP请求到达时,Tomcat会:
- 从filterConfigs中获取对应的FilterConfig
- 调用getFilter()获取filter实例
- 执行filter的doFilter方法
// ApplicationFilterChain.internalDoFilter关键代码
Filter filter = filterConfig.getFilter();
filter.doFilter(request, response, this);
设计考量
jMG选择不显式创建filter实例的主要考虑是:
- 减少payload长度:避免在注入代码中包含实例化逻辑
- 利用Tomcat自身机制:依赖Tomcat的标准初始化流程
- 提高兼容性:适应不同版本的Tomcat实现
技术验证
通过以下步骤可以验证内存马是否成功注入:
- 检查Context的filterDefs中是否包含注入的filter定义
- 确认filterConfigs映射表中存在对应的FilterConfig
- 发送测试请求观察内存马是否响应
总结
Java-Memshell-Generator中的Tomcat Filter注入器虽然看似缺少部分代码,但实际上利用了Tomcat自身的filter实例化机制,是一种精简而有效的设计。这种实现方式既保证了功能完整性,又优化了payload大小,体现了对Tomcat内部机制的深入理解。
对于安全研究人员而言,理解这种注入机制有助于更好地分析内存马行为,也为防御此类攻击提供了思路。防御方可以重点关注filterConfigs和filterDefs的异常修改,以及非标准filterClass的加载行为。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210