Java-Memshell-Generator项目中的Tomcat Filter内存马注入机制分析
2025-07-07 14:11:40作者:伍霜盼Ellen
背景介绍
Java-Memshell-Generator(简称jMG)是一款用于生成Java内存马的工具,其中包含了对Tomcat Filter类型内存马的注入功能。近期有安全研究人员在使用过程中发现了一些关于Filter注入机制的疑问,本文将深入分析其工作原理。
问题现象
在使用jMG注入Tomcat Filter内存马时,研究人员注意到代码中存在两个现象:
- 注入器代码中没有直接实例化filter对象
- 没有将filter参数显式添加到filterDef对象中
这引发了关于内存马是否成功注入的疑问,但实际上内存马仍然能够正常工作。
技术原理分析
Tomcat Filter注入流程
Tomcat中Filter的注入主要涉及以下几个关键步骤:
- 创建Filter定义(FilterDef)对象
- 将Filter定义添加到Context中
- 创建Filter配置(ApplicationFilterConfig)对象
- 将Filter配置存入Context的filterConfigs映射表
关键代码解析
jMG中的核心注入代码如下:
Constructor[] constructors = Class.forName("org.apache.catalina.core.ApplicationFilterConfig").getDeclaredConstructors();
Object filterConfig = constructors[0].newInstance(context, filterDef);
Map filterConfigs = (Map)getFV(context, "filterConfigs");
filterConfigs.put(filterName, filterConfig);
这段代码通过反射实例化ApplicationFilterConfig对象,并将其存入Context的filterConfigs中。
自动实例化机制
虽然注入代码没有显式创建filter实例,但Tomcat内部有自动实例化机制:
- ApplicationFilterConfig构造函数中会检查filterDef.getFilter()是否为null
- 如果为null,则调用getFilter()方法
- getFilter()方法会根据filterDef中的filterClass自动创建filter实例
// ApplicationFilterConfig.getFilter()关键代码
String filterClass = this.filterDef.getFilterClass();
this.filter = (Filter)this.getInstanceManager().newInstance(filterClass);
请求处理流程
当HTTP请求到达时,Tomcat会:
- 从filterConfigs中获取对应的FilterConfig
- 调用getFilter()获取filter实例
- 执行filter的doFilter方法
// ApplicationFilterChain.internalDoFilter关键代码
Filter filter = filterConfig.getFilter();
filter.doFilter(request, response, this);
设计考量
jMG选择不显式创建filter实例的主要考虑是:
- 减少payload长度:避免在注入代码中包含实例化逻辑
- 利用Tomcat自身机制:依赖Tomcat的标准初始化流程
- 提高兼容性:适应不同版本的Tomcat实现
技术验证
通过以下步骤可以验证内存马是否成功注入:
- 检查Context的filterDefs中是否包含注入的filter定义
- 确认filterConfigs映射表中存在对应的FilterConfig
- 发送测试请求观察内存马是否响应
总结
Java-Memshell-Generator中的Tomcat Filter注入器虽然看似缺少部分代码,但实际上利用了Tomcat自身的filter实例化机制,是一种精简而有效的设计。这种实现方式既保证了功能完整性,又优化了payload大小,体现了对Tomcat内部机制的深入理解。
对于安全研究人员而言,理解这种注入机制有助于更好地分析内存马行为,也为防御此类攻击提供了思路。防御方可以重点关注filterConfigs和filterDefs的异常修改,以及非标准filterClass的加载行为。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
28