Passenger在AlmaLinux 9上的编译问题及解决方案
问题背景
在AlmaLinux 9操作系统上编译Passenger 6.0.22时,开发人员遇到了编译失败的问题。错误信息显示编译器无法生成可执行文件,并提示需要先安装开发工具。这个问题在最小化安装环境中尤为常见,特别是在禁用了弱依赖安装的情况下。
错误现象
当尝试在AlmaLinux 9(ARM64架构)上编译Passenger时,会出现以下关键错误:
The compiler failed to generate an executable file. (RuntimeError)
You have to install development tools first.
错误发生在Ruby的mkmf.rb尝试检查头文件时,表明基本的开发环境配置存在问题。
根本原因分析
经过测试发现,问题的根源在于缺少redhat-rpm-config软件包。这个包在RedHat系发行版中提供了关键的编译配置,特别是包含了redhat-hardened-cc1等必要的编译工具链组件。
在默认安装情况下,系统会自动安装这些弱依赖项。但当使用--setopt=install_weak_deps=False参数进行最小化安装时,这些关键组件会被忽略,导致编译环境不完整。
解决方案
有两种方法可以解决这个问题:
-
允许安装弱依赖:在安装系统包时不使用
--setopt=install_weak_deps=False参数,让系统自动安装必要的依赖项。 -
显式安装redhat-rpm-config:在安装其他开发工具的同时,明确添加这个关键包:
dnf install redhat-rpm-config gcc gcc-c++ libcurl-devel openssl-devel pcre2-devel ruby-devel zlib-devel
技术细节
redhat-rpm-config软件包在RedHat系发行版中扮演着重要角色,它提供了:
- 标准的编译标志和选项
- 系统特定的头文件位置配置
- 安全加固的编译器配置
- RPM构建所需的各种宏定义
特别是在AlmaLinux/RHEL 9中,这个包提供的redhat-hardened-cc1组件是现代安全编译的基础,缺少它会导致基本的编译工具链无法正常工作。
最佳实践建议
对于生产环境中的Passenger部署,建议:
- 总是确保完整的开发环境,包括
redhat-rpm-config - 在Docker等容器环境中构建时,明确列出所有依赖项
- 考虑使用Passenger的预编译包或官方仓库来避免编译问题
- 在最小化安装环境中,务必测试编译过程是否完整
总结
Passenger在AlmaLinux 9上的编译问题主要源于最小化安装环境缺少关键的系统配置包。通过理解RedHat系发行版的包依赖关系,特别是redhat-rpm-config的作用,可以有效地解决这类编译环境配置问题。这不仅是Passenger特有的问题,也是所有需要在RHEL系发行版上进行源代码编译的软件需要注意的通用问题。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00