Darts时间序列库处理缺失值的实践指南
2025-05-27 04:26:25作者:薛曦旖Francesca
前言
在金融时间序列分析中,数据缺失是常见问题。本文基于Darts时间序列库在实际项目中的应用经验,深入探讨如何处理包含缺失值的时间序列数据,特别是针对金融数据分析场景。
Darts时间序列数据结构特性
Darts的TimeSeries数据结构有一个重要特性:它保证具有完整且按时间排序的时间索引。这意味着:
- 当从DataFrame创建TimeSeries时,如果原始数据中存在时间间隔缺失,Darts会自动补全这些时间点
- 补全的时间点会用NaN填充
- 这种设计确保了时间序列的连续性,便于后续分析
缺失值处理的挑战
在金融数据分析中,我们经常遇到以下情况:
- 交易日数据(Business Day频率)天然存在周末和节假日缺口
- 某些股票可能在某些交易日没有交易记录
- 直接填充缺失值(如插值或零填充)可能导致不切实际的分析结果
解决方案比较
方案一:使用MissingValuesFiller
Darts提供了MissingValuesFiller工具,可以自动填充缺失值。但对于金融数据,简单的插值可能引入偏差。
from darts.dataprocessing.transformers import MissingValuesFiller
filler = MissingValuesFiller()
filled_series = filler.transform(original_series)
方案二:分割连续片段
更合理的做法是将含缺失值的时间序列分割为多个连续片段:
# 获取所有连续片段
continuous_series = original_series.gaps()
# 或者获取最长连续片段
longest_continuous = original_series.longest_contiguous_slice()
这种方法特别适合:
- 缺失值较多的场景
- 不允许插值的分析需求
- 需要保持数据真实性的情况
方案三:样本权重法(推荐)
Darts最新版本支持样本权重功能,可以优雅地处理缺失值:
- 保持时间序列完整性
- 训练时自动忽略NaN值
- 不引入虚假数据
from darts.models import RegressionModel
from sklearn.linear_model import LinearRegression
# 创建带有样本权重的模型
model = RegressionModel(lags=10,
model=LinearRegression(),
use_static_covariates=False)
# 自动处理缺失值
model.fit(series_with_nans)
静态协变量保留技巧
当使用TimeSeries.from_group_dataframe()方法时,需要注意:
- 默认情况下分组列会被丢弃
- 通过设置drop_group_cols=False可以保留为静态协变量
- 非数值型协变量需要转换为数值形式
series_group = TimeSeries.from_group_dataframe(
df,
time_col='datetime',
group_cols=['ticker'],
value_cols='close',
drop_group_cols=False # 保留分组列
)
金融时间序列分析实践建议
- 对于高频数据(如30分钟频率),考虑使用样本权重法
- 长期缺失(超过1天)建议分割为多个时间序列
- 回测时需手动重组预测结果
- 避免简单插值导致的预测偏差
结语
Darts时间序列库提供了多种处理缺失值的方案,金融数据分析师应根据具体场景选择最适合的方法。样本权重法是当前最推荐的解决方案,既保持了数据真实性,又简化了建模流程。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328