Ollama Python 客户端工具调用功能解析
2025-05-30 13:48:38作者:何将鹤
在人工智能应用开发中,函数调用(Function Calling)已成为增强大语言模型能力的重要方式。Ollama Python 客户端近期实现了工具调用功能,为开发者提供了更便捷的模型交互方式。
工具调用功能概述
工具调用允许开发者向语言模型传递一组预定义的工具(函数)描述,模型可以根据用户查询智能选择并调用适当的工具。这种机制特别适合需要与外部系统或API交互的场景,如查询支付状态、获取天气信息等。
功能实现方式
在最新版本的Ollama Python客户端中,开发者可以通过两种方式实现工具调用:
- 直接API调用:通过HTTP请求向Ollama服务发送包含工具定义的JSON数据
- Python客户端调用:使用Client类的chat方法,直接传递工具列表参数
代码示例对比
传统API调用方式
import requests
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "获取指定位置的天气信息",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"}
},
"required": ["location"]
}
}
}
]
response = requests.post(
'http://localhost:11434/v1/chat/completions',
json={
"model": "llama3",
"messages": [{"role": "user", "content": "北京天气怎么样?"}],
"tools": tools
}
)
Python客户端调用方式
from ollama import Client
client = Client(host='http://localhost:11434')
response = client.chat(
model='llama3',
messages=[{'role': 'user', 'content': '北京天气怎么样?'}],
tools=[
{
'type': 'function',
'function': {
'name': 'get_weather',
'description': '获取指定位置的天气信息',
'parameters': {
'type': 'object',
'properties': {
'location': {'type': 'string'}
},
'required': ['location']
}
}
}
]
)
技术实现要点
- 工具定义规范:遵循OpenAI的函数调用格式,包含名称、描述和参数定义
- 参数验证:客户端会自动验证工具定义的JSON Schema格式
- 响应处理:模型返回包含工具调用建议的响应,开发者可据此执行实际函数
应用场景建议
- 数据查询系统:连接数据库或外部API获取实时数据
- 自动化工作流:触发特定业务流程或操作
- 知识增强:补充模型知识库之外的特定领域信息
最佳实践
- 为每个工具提供清晰准确的描述,帮助模型理解何时使用该工具
- 参数定义应尽可能详细,包括类型和必需字段
- 考虑添加示例参数值,进一步提高模型调用准确性
- 实现适当的错误处理机制,应对模型可能返回的无效调用请求
Ollama Python客户端的工具调用功能极大简化了与大语言模型的交互流程,使开发者能够更高效地构建基于AI的应用程序。这一功能的实现标志着Ollama生态在开发者体验方面的又一进步。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210