Ollama Python 客户端工具调用功能解析
2025-05-30 03:44:37作者:何将鹤
在人工智能应用开发中,函数调用(Function Calling)已成为增强大语言模型能力的重要方式。Ollama Python 客户端近期实现了工具调用功能,为开发者提供了更便捷的模型交互方式。
工具调用功能概述
工具调用允许开发者向语言模型传递一组预定义的工具(函数)描述,模型可以根据用户查询智能选择并调用适当的工具。这种机制特别适合需要与外部系统或API交互的场景,如查询支付状态、获取天气信息等。
功能实现方式
在最新版本的Ollama Python客户端中,开发者可以通过两种方式实现工具调用:
- 直接API调用:通过HTTP请求向Ollama服务发送包含工具定义的JSON数据
- Python客户端调用:使用Client类的chat方法,直接传递工具列表参数
代码示例对比
传统API调用方式
import requests
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "获取指定位置的天气信息",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"}
},
"required": ["location"]
}
}
}
]
response = requests.post(
'http://localhost:11434/v1/chat/completions',
json={
"model": "llama3",
"messages": [{"role": "user", "content": "北京天气怎么样?"}],
"tools": tools
}
)
Python客户端调用方式
from ollama import Client
client = Client(host='http://localhost:11434')
response = client.chat(
model='llama3',
messages=[{'role': 'user', 'content': '北京天气怎么样?'}],
tools=[
{
'type': 'function',
'function': {
'name': 'get_weather',
'description': '获取指定位置的天气信息',
'parameters': {
'type': 'object',
'properties': {
'location': {'type': 'string'}
},
'required': ['location']
}
}
}
]
)
技术实现要点
- 工具定义规范:遵循OpenAI的函数调用格式,包含名称、描述和参数定义
- 参数验证:客户端会自动验证工具定义的JSON Schema格式
- 响应处理:模型返回包含工具调用建议的响应,开发者可据此执行实际函数
应用场景建议
- 数据查询系统:连接数据库或外部API获取实时数据
- 自动化工作流:触发特定业务流程或操作
- 知识增强:补充模型知识库之外的特定领域信息
最佳实践
- 为每个工具提供清晰准确的描述,帮助模型理解何时使用该工具
- 参数定义应尽可能详细,包括类型和必需字段
- 考虑添加示例参数值,进一步提高模型调用准确性
- 实现适当的错误处理机制,应对模型可能返回的无效调用请求
Ollama Python客户端的工具调用功能极大简化了与大语言模型的交互流程,使开发者能够更高效地构建基于AI的应用程序。这一功能的实现标志着Ollama生态在开发者体验方面的又一进步。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355