Flask-Shell2HTTP 使用指南
2025-04-18 15:20:47作者:申梦珏Efrain
1. 项目介绍
Flask-Shell2HTTP 是一个基于 Flask 框架的扩展,它可以将任何命令行工具转换为 REST API 服务。这个扩展通过 Flask 的端点异步且安全地执行预定义的 shell 命令,支持动态参数、文件上传、回调函数等功能。它适用于二进制到二进制/HTTP 通信、开发、原型设计、远程控制等多种场景。
2. 项目快速启动
首先,确保您的环境中已经安装了 Python(版本需大于等于 3.6)和 Flask。
接着,通过以下命令安装 Flask-Shell2HTTP:
pip install flask flask_shell2http
然后,创建一个名为 app.py 的文件,并编写以下代码:
from flask import Flask
from flask_executor import Executor
from flask_shell2http import Shell2HTTP
# 创建 Flask 应用实例
app = Flask(__name__)
executor = Executor(app)
shell2http = Shell2HTTP(app=app, executor=executor, base_url_prefix="/commands/")
def my_callback_fn(context, future):
# 用户定义的回调函数(可选)
print(context, future.result())
# 注册一个命令到端点
shell2http.register_command(endpoint="saythis", command_name="echo", callback_fn=my_callback_fn, decorators=[])
if __name__ == "__main__":
app.run(port=4000)
最后,运行应用服务器:
flask run -p 4000
现在,您的 Flask 应用已经可以通过 HTTP 调用来执行 shell 命令了。
3. 应用案例和最佳实践
设置回调函数
在执行完 shell 命令后,可以定义一个回调函数来处理结果:
def my_callback_fn(context, future):
# 用户定义的回调函数(可选)
print(context, future.result())
shell2http.register_command(endpoint="callback_example", command_name="echo", callback_fn=my_callback_fn, decorators=[])
处理文件上传
Flask-Shell2HTTP 支持在命令中处理多个文件上传:
shell2http.register_command(endpoint="upload_example", command_name="some_command", callback_fn=None, decorators=[], allow_files=True)
使用装饰器
可以为端点添加 Flask 装饰器来控制访问:
from flask import request
def require_login(f):
@wraps(f)
def decorated_function(*args, **kwargs):
if request.remote_addr != '127.0.0.1':
return "Not allowed", 403
return f(*args, **kwargs)
return decorated_function
shell2http.register_command(endpoint="secure_command", command_name="echo", callback_fn=None, decorators=[require_login])
4. 典型生态项目
Flask-Shell2HTTP 可以与 Docker 容器中的其他服务配合使用,例如将不同的二进制工具分布在微容器中,并通过 HTTP 请求在这些容器之间进行通信。这种模式特别适用于需要隔离环境或动态执行不同命令的场景。
以上是基于 Flask-Shell2HTTP 的简单教程,通过这个扩展,开发者可以轻松地将命令行工具转化为网络服务,为各种自动化任务提供便利。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355