KServe项目VLLM推理引擎CPU支持的技术实现分析
2025-06-16 05:58:55作者:吴年前Myrtle
背景介绍
在机器学习推理服务领域,KServe作为一个流行的开源模型服务平台,提供了多种推理引擎的支持。其中VLLM(Very Large Language Model)作为专门针对大语言模型优化的推理引擎,在GPU环境下表现出色。然而在实际生产环境中,很多用户需要在CPU环境下运行VLLM推理服务,这就引出了对CPU版本VLLM支持的需求。
技术挑战
VLLM原本设计主要针对GPU加速,其官方Docker镜像也默认提供了GPU版本。要在KServe中支持CPU版本的VLLM,主要面临以下技术挑战:
- 镜像构建:需要基于VLLM官方提供的CPU专用Dockerfile构建KServe兼容的镜像
- 资源调度:需要确保KServe能够正确识别并调度CPU资源而非GPU资源
- 性能优化:CPU环境下需要特别考虑内存管理和计算优化
- 兼容性保证:需要确保CPU版本与现有GPU版本API接口完全兼容
解决方案
针对上述挑战,KServe社区提出了几种可行的技术方案:
方案一:运行时参数控制
在单一镜像中同时包含GPU和CPU支持,通过运行时参数决定使用哪种计算后端。这种方案的优点是部署简单,但缺点是镜像体积较大,包含了不必要的CUDA依赖。
方案二:专用CPU镜像
类似TorchServe的做法,提供专用的"-cpu"后缀镜像,当检测到没有GPU资源时自动使用CPU镜像。这种方案镜像更精简,但需要维护两套构建流程。
实现细节
从技术实现角度看,CPU版本的VLLM在KServe中的集成需要注意以下关键点:
- 基础镜像选择:需要使用不包含CUDA的基础镜像,如官方提供的CPU专用Python镜像
- 依赖管理:需要特别处理与GPU相关的依赖项,确保它们不会在CPU环境下被加载
- 性能调优:针对CPU环境调整默认的批处理大小和并行度参数
- 资源限制:正确配置CPU和内存的资源请求与限制
社区进展
目前KServe社区已经着手实现这一功能,相关开发工作正在进行中。实现后将使更多没有GPU资源的环境能够利用VLLM的高效推理能力,进一步扩大KServe的适用场景。
总结
VLLM CPU版本的支持是KServe平台功能扩展的重要一步,它不仅能够满足更多样化的部署环境需求,也为资源受限的场景提供了可行的解决方案。随着这一功能的完善,KServe在大语言模型服务领域的能力将得到进一步增强。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881