Yup项目中泛型数组返回类型推断问题的解决方案
2025-05-08 20:17:31作者:卓艾滢Kingsley
在使用Yup进行表单验证时,开发者经常会遇到需要处理分页数据集合的情况。为了保持代码的DRY原则(Don't Repeat Yourself),通常会创建一个通用的分页Schema生成函数。然而,在使用TypeScript和Yup结合时,可能会遇到一个关于泛型数组返回类型推断的特定问题。
问题背景
当开发者尝试创建一个通用的分页Schema生成函数时,通常会这样定义:
const getPaginatedSchema = <T extends AnyObjectSchema>(entitySchema: T) => object({
count: number().required(),
items: array(entitySchema).required(),
pagination: object({
skip: number().min(0).integer().required(),
limit: number().positive().integer().required(),
}),
});
理想情况下,我们希望items字段的类型能够正确推断为T[],即传入的实体Schema类型的数组。然而实际上,TypeScript会将其推断为any[],这显然不是我们想要的结果。
问题分析
这个问题特别出现在同时满足以下两个条件时:
- 使用了泛型参数
T - 将泛型参数用于
array()方法中
有趣的是,如果单独使用泛型参数而不包裹在array()中,或者使用非泛型的简单类型(如number()),类型推断都能正常工作。
解决方案
根据Yup项目维护者的建议,可以通过显式指定array()方法的类型参数来解决这个问题:
items: array<any, InferType<T>>(entitySchema).required()
这里使用了两个类型参数:
- 第一个
any参数表示数组的原始类型 - 第二个
InferType<T>参数表示推断后的类型
深入理解
这种解决方案背后的原理是帮助TypeScript更好地理解类型关系。InferType是Yup提供的一个实用类型,用于从Schema类型推断出最终的TypeScript类型。通过显式指定这些类型参数,我们绕过了TypeScript的类型推断机制在某些复杂泛型情况下的局限性。
最佳实践
对于需要处理分页数据的Yup Schema,推荐以下实现方式:
import { array, number, object, InferType } from 'yup';
const getPaginatedSchema = <T extends AnyObjectSchema>(entitySchema: T) =>
object({
count: number().required(),
items: array<any, InferType<T>>(entitySchema).required(),
pagination: object({
skip: number().min(0).integer().required(),
limit: number().positive().integer().required(),
}),
});
type PaginatedSchema<T extends AnyObjectSchema> = InferType<ReturnType<typeof getPaginatedSchema<T>>>;
这种方式不仅解决了类型推断问题,还保持了代码的通用性和类型安全性。
总结
在使用Yup创建复杂的泛型Schema时,可能会遇到类型推断不准确的情况。通过显式指定类型参数,特别是对于array()这样的方法,可以确保类型系统正确理解我们的意图。这虽然增加了一点代码量,但换来了更好的类型安全性和开发体验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140