Yup项目中泛型数组返回类型推断问题的解决方案
2025-05-08 02:36:48作者:卓艾滢Kingsley
在使用Yup进行表单验证时,开发者经常会遇到需要处理分页数据集合的情况。为了保持代码的DRY原则(Don't Repeat Yourself),通常会创建一个通用的分页Schema生成函数。然而,在使用TypeScript和Yup结合时,可能会遇到一个关于泛型数组返回类型推断的特定问题。
问题背景
当开发者尝试创建一个通用的分页Schema生成函数时,通常会这样定义:
const getPaginatedSchema = <T extends AnyObjectSchema>(entitySchema: T) => object({
count: number().required(),
items: array(entitySchema).required(),
pagination: object({
skip: number().min(0).integer().required(),
limit: number().positive().integer().required(),
}),
});
理想情况下,我们希望items字段的类型能够正确推断为T[],即传入的实体Schema类型的数组。然而实际上,TypeScript会将其推断为any[],这显然不是我们想要的结果。
问题分析
这个问题特别出现在同时满足以下两个条件时:
- 使用了泛型参数
T - 将泛型参数用于
array()方法中
有趣的是,如果单独使用泛型参数而不包裹在array()中,或者使用非泛型的简单类型(如number()),类型推断都能正常工作。
解决方案
根据Yup项目维护者的建议,可以通过显式指定array()方法的类型参数来解决这个问题:
items: array<any, InferType<T>>(entitySchema).required()
这里使用了两个类型参数:
- 第一个
any参数表示数组的原始类型 - 第二个
InferType<T>参数表示推断后的类型
深入理解
这种解决方案背后的原理是帮助TypeScript更好地理解类型关系。InferType是Yup提供的一个实用类型,用于从Schema类型推断出最终的TypeScript类型。通过显式指定这些类型参数,我们绕过了TypeScript的类型推断机制在某些复杂泛型情况下的局限性。
最佳实践
对于需要处理分页数据的Yup Schema,推荐以下实现方式:
import { array, number, object, InferType } from 'yup';
const getPaginatedSchema = <T extends AnyObjectSchema>(entitySchema: T) =>
object({
count: number().required(),
items: array<any, InferType<T>>(entitySchema).required(),
pagination: object({
skip: number().min(0).integer().required(),
limit: number().positive().integer().required(),
}),
});
type PaginatedSchema<T extends AnyObjectSchema> = InferType<ReturnType<typeof getPaginatedSchema<T>>>;
这种方式不仅解决了类型推断问题,还保持了代码的通用性和类型安全性。
总结
在使用Yup创建复杂的泛型Schema时,可能会遇到类型推断不准确的情况。通过显式指定类型参数,特别是对于array()这样的方法,可以确保类型系统正确理解我们的意图。这虽然增加了一点代码量,但换来了更好的类型安全性和开发体验。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19