Yup项目中泛型数组返回类型推断问题的解决方案
2025-05-08 10:59:08作者:卓艾滢Kingsley
在使用Yup进行表单验证时,开发者经常会遇到需要处理分页数据集合的情况。为了保持代码的DRY原则(Don't Repeat Yourself),通常会创建一个通用的分页Schema生成函数。然而,在使用TypeScript和Yup结合时,可能会遇到一个关于泛型数组返回类型推断的特定问题。
问题背景
当开发者尝试创建一个通用的分页Schema生成函数时,通常会这样定义:
const getPaginatedSchema = <T extends AnyObjectSchema>(entitySchema: T) => object({
count: number().required(),
items: array(entitySchema).required(),
pagination: object({
skip: number().min(0).integer().required(),
limit: number().positive().integer().required(),
}),
});
理想情况下,我们希望items字段的类型能够正确推断为T[],即传入的实体Schema类型的数组。然而实际上,TypeScript会将其推断为any[],这显然不是我们想要的结果。
问题分析
这个问题特别出现在同时满足以下两个条件时:
- 使用了泛型参数
T - 将泛型参数用于
array()方法中
有趣的是,如果单独使用泛型参数而不包裹在array()中,或者使用非泛型的简单类型(如number()),类型推断都能正常工作。
解决方案
根据Yup项目维护者的建议,可以通过显式指定array()方法的类型参数来解决这个问题:
items: array<any, InferType<T>>(entitySchema).required()
这里使用了两个类型参数:
- 第一个
any参数表示数组的原始类型 - 第二个
InferType<T>参数表示推断后的类型
深入理解
这种解决方案背后的原理是帮助TypeScript更好地理解类型关系。InferType是Yup提供的一个实用类型,用于从Schema类型推断出最终的TypeScript类型。通过显式指定这些类型参数,我们绕过了TypeScript的类型推断机制在某些复杂泛型情况下的局限性。
最佳实践
对于需要处理分页数据的Yup Schema,推荐以下实现方式:
import { array, number, object, InferType } from 'yup';
const getPaginatedSchema = <T extends AnyObjectSchema>(entitySchema: T) =>
object({
count: number().required(),
items: array<any, InferType<T>>(entitySchema).required(),
pagination: object({
skip: number().min(0).integer().required(),
limit: number().positive().integer().required(),
}),
});
type PaginatedSchema<T extends AnyObjectSchema> = InferType<ReturnType<typeof getPaginatedSchema<T>>>;
这种方式不仅解决了类型推断问题,还保持了代码的通用性和类型安全性。
总结
在使用Yup创建复杂的泛型Schema时,可能会遇到类型推断不准确的情况。通过显式指定类型参数,特别是对于array()这样的方法,可以确保类型系统正确理解我们的意图。这虽然增加了一点代码量,但换来了更好的类型安全性和开发体验。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26