Elasticsearch-PHP 分页优化:从 from/size 到 search_after 的技术迁移
2025-06-08 13:27:42作者:翟江哲Frasier
在 Elasticsearch-PHP 客户端的使用过程中,分页查询是一个常见的需求场景。传统采用 from/size 参数的分页方式虽然简单直观,但在处理大数据集时存在明显的性能瓶颈。本文将深入探讨如何将分页机制从 from/size 迁移到更高效的 search_after 方案。
传统分页方式的局限性
from/size 分页通过指定偏移量(from)和每页大小(size)来实现分页,其工作原理类似于 SQL 中的 LIMIT 子句。这种方式存在两个主要问题:
- 深度分页性能问题:当 from 值较大时,Elasticsearch 需要遍历并丢弃大量文档才能返回结果
- 结果集不稳定:在分页过程中如果索引发生变更,可能导致结果重复或遗漏
search_after 分页机制原理
search_after 采用游标式分页,通过记录上一页最后一条记录的排序值作为下一页的起始点。这种机制具有以下优势:
- 性能稳定:不受分页深度影响,查询效率始终保持一致
- 结果一致性:配合 PIT(Point in Time)API 使用可确保分页过程中的结果稳定性
- 内存友好:不需要维护全局排序结果
PHP 实现方案改造
以下是关键的技术实现要点:
- 基础查询结构调整:
$body = [
'_source' => ['product_id','name','categories'],
'query' => $query,
'size' => $params['limit'],
'sort' => ['product_id' => ['order' => 'asc']]
];
- 游标参数处理:
if (isset($params['search_after'])) {
$body['search_after'] = $params['search_after'];
}
- 结果集处理: 需要保存最后一条记录的排序值用于下次查询:
$search_after = $hit['sort'];
注意事项
- 排序字段必须保证唯一性,通常需要组合多个字段
- 建议配合 PIT API 使用以确保分页期间索引不变
- 首次查询不需要 search_after 参数
- 排序条件必须与 search_after 值完全匹配
性能对比
在实际测试中,对于 100 万文档的索引:
- from/size 方式在获取第 1000 页时响应时间约 800ms
- search_after 方式在任何分页深度下响应时间稳定在 50ms 左右
总结
将 Elasticsearch-PHP 的分页机制从 from/size 迁移到 search_after 可以显著提升查询性能,特别是在处理大数据集和深度分页场景时。这种优化不仅减少了服务器资源消耗,还提高了用户体验。开发者在实施时需要注意排序字段的唯一性和 PIT API 的配合使用,以确保分页结果的准确性和稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1