首页
/ Kubernetes Descheduler中Pod排序逻辑的优化分析

Kubernetes Descheduler中Pod排序逻辑的优化分析

2025-06-11 16:09:28作者:咎岭娴Homer

在Kubernetes生态系统中,Descheduler是一个重要的组件,它通过重新调度Pod来优化集群资源利用率。本文将深入分析Descheduler中一个关键的Pod排序逻辑问题及其优化方案。

问题背景

在Descheduler的Pod驱逐策略实现中,sortDomains函数负责对拓扑域中的Pod进行排序。这个排序过程决定了哪些Pod会被优先考虑驱逐,是影响调度决策的核心逻辑之一。

现有实现分析

当前代码中存在一个潜在的问题:当比较两个Pod是否具有相同的选择器或亲和性设置时,虽然调用了comparePodsByPriority函数来比较Pod优先级,但没有使用其返回值。这可能导致排序结果不符合预期。

if hasSelectorOrAffinity(*list[i]) == hasSelectorOrAffinity(*list[j]) {
    comparePodsByPriority(list[i], list[j])  // 返回值未被使用
}

问题影响

这种实现会导致以下问题:

  1. 当两个Pod的选择器/亲和性状态相同时,排序结果不可预测
  2. 高优先级Pod可能被错误地排在低优先级Pod之前
  3. 影响Descheduler的Pod驱逐决策,可能导致不合理的调度结果

解决方案

正确的实现应该使用comparePodsByPriority的返回值来决定排序顺序:

if hasSelectorOrAffinity(*list[i]) == hasSelectorOrAffinity(*list[j]) {
    return comparePodsByPriority(list[i], list[j])  // 使用返回值
}

深入理解排序逻辑

完整的Pod排序策略遵循以下优先级:

  1. 不可驱逐的Pod排在最后
  2. 对于可驱逐的Pod:
    • 没有选择器/亲和性的Pod优先于有选择器/亲和性的Pod
    • 对于相同选择器/亲和性状态的Pod,按优先级排序

技术意义

这个修复确保了:

  1. 低优先级Pod会被优先考虑驱逐
  2. 无节点选择约束的Pod优先于有约束的Pod
  3. 整体调度决策更加合理和可预测

总结

在Kubernetes Descheduler这类核心组件中,排序逻辑的准确性直接影响集群的调度质量。这个看似简单的返回值遗漏问题,实际上可能对集群调度行为产生深远影响。通过这样的细节优化,可以确保Descheduler按照设计预期工作,为Kubernetes集群提供更可靠的调度优化能力。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.92 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
929
553
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8