Segment Anything Model 2 (SAM2) 在M1 Mac上的安装与使用指南
背景介绍
Segment Anything Model 2 (SAM2) 是Meta AI推出的新一代图像分割模型,相比第一代在性能和功能上都有显著提升。然而,许多使用Apple M1/M2芯片Mac的用户在安装过程中遇到了CUDA相关的问题,这是因为M系列芯片使用的是Apple自家的Metal架构而非NVIDIA的CUDA。
安装挑战与解决方案
传统安装问题
在M1 Mac上直接安装SAM2时,系统会尝试编译CUDA扩展,这会导致安装失败,因为M1芯片不支持NVIDIA的CUDA架构。错误通常表现为无法找到CUDA工具包或编译失败。
最新解决方案
开发团队已经意识到这个问题,并提供了两种解决方案:
-
跳过CUDA扩展安装:最新版本的SAM2已将CUDA扩展设为可选组件。用户可以通过设置环境变量来跳过CUDA扩展的编译:
SAM2_BUILD_CUDA=0 pip install -e ".[demo]" -
使用MPS加速:对于M1/M2芯片用户,可以利用Apple的Metal Performance Shaders (MPS)来加速PyTorch运算。开发团队已更新了相关示例代码,专门为M1芯片用户提供了支持。
详细安装步骤
-
首先确保你的系统满足以下要求:
- macOS 12.3或更高版本
- Python 3.8或更高版本
- 已安装最新版PyTorch(支持MPS版本)
-
克隆SAM2仓库并进入项目目录:
git clone https://github.com/facebookresearch/segment-anything-2.git cd segment-anything-2 -
安装依赖项(跳过CUDA扩展):
SAM2_BUILD_CUDA=0 pip install -e ".[demo]" -
验证安装:
python -c "import torch; print(torch.backends.mps.is_available())"应该返回
True表示MPS可用。
使用MPS加速
在代码中使用MPS加速非常简单,只需将设备指定为MPS即可:
import torch
device = "mps" if torch.backends.mps.is_available() else "cpu"
predictor = build_sam2_video_predictor(device=device)
性能考虑
虽然MPS提供了硬件加速,但相比CUDA在NVIDIA GPU上的性能仍有差距。对于大型图像或视频处理任务,建议:
- 降低输入分辨率
- 使用批处理时减小batch size
- 考虑使用云GPU服务处理大规模任务
常见问题解答
Q: 为什么我的M1 Mac仍然报错"Torch not compiled with CUDA enabled"?
A: 这通常是因为代码中仍然尝试使用CUDA设备。确保在初始化模型时显式指定使用MPS设备。
Q: 性能不如预期怎么办?
A: 可以尝试以下优化:
- 更新到最新版macOS和PyTorch
- 确保没有其他大型应用占用系统资源
- 考虑使用更轻量级的模型变体
未来展望
随着Apple Silicon生态的完善,预计未来会有更多针对M系列芯片的优化。开发团队也表示会持续改进对非CUDA硬件的支持,包括可能推出专门的Metal优化版本。
通过以上方法,M1/M2 Mac用户现在可以顺利安装并使用SAM2进行图像分割任务,虽然性能可能不及高端NVIDIA GPU,但对于大多数研究和开发目的已经足够。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00