Irwi 技术文档
本文档将详细介绍如何安装、使用及配置 Irwi 插件,该插件为 Ruby on Rails 4 应用程序提供维基功能。
1. 安装指南
在您的 Gemfile 文件中添加以下内容:
gem 'irwi', :git => 'git://github.com/alno/irwi.git'
然后在您的应用程序目录中执行以下命令:
rails g irwi_wiki
此命令将生成以下文件:
WikiPageController
:用于服务维基页面WikiPage
:表示页面的模型- 数据库迁移文件
同时,它将在您的 routes.rb
文件中添加类似以下内容:
wiki_root '/wiki'
2. 项目使用说明
维基语法
您可以通过以下方式在文本中链接其他页面:
[[某个页面标题]]
如果链接的页面存在,它将被替换为指向该页面的链接;如果不存在,它将被替换为指向新页面的链接。
模板定义
您可以创建自己的控制器动作模板(show
、edit
和 history
),如果不自定义,将使用内置的默认模板。
辅助方法定义
以下辅助方法默认被定义,您可以用自己的方法替换它们:
wiki_user
:根据给定的用户对象渲染用户名或链接。默认情况下,对于nil
,它渲染<Unknown>
,对于其他用户,渲染 "User#{user.id}"。
配置
配置选项可以通过 Irwi.config
对象访问。目前支持的选项有:
-
user_class_name
:用户模型类的名称。默认为'User'
。 -
formatter
:在输出之前处理维基内容的格式化器实例(见下文)。 -
paginator
:显示分页控制的分页器实例(见下文)。 -
comparator
:构建并渲染两个文本之间的更改集合的比较器实例。默认使用Irwi::Comparators::DiffLcs
。
格式化器
Irwi 支持自定义格式化器,可以通过设置 Irwi.config.formatter
为相应的实例来配置。每个格式化器都应该有一个 format
方法,它接收一个字符串并返回格式化后的字符串。
以下是一些基于不同宝石的支持的格式化器(您应该将它们添加到应用程序的 Gemfile 中):
Irwi::Formatters::RedCloth
:基于RedCloth
宝石的 Markdown 格式化器。Irwi::Formatters::RedCarpet
:基于redcarpet
宝石的 Markdown 格式化。Irwi::Formatters::BlueCloth
:基于BlueCloth
宝石的 Textile 格式化。Irwi::Formatters::WikiCloth
:基于wiki_cloth
宝石的格式化器。Irwi::Formatters::SimpleHtml
:不做任何处理的格式化器。
默认情况下,Irwi 会选择应用程序 Gemfile 中存在的第一个格式化器。您也可以通过指定 Irwi.config.formatter
值来显式选择格式化器,例如:
Irwi.config.formatter = Irwi::Formatters::BlueCloth.new
分页器
Irwi 支持自定义分页器,可以通过设置 Irwi.config.paginator
为相应的实例来配置。以下是一些支持的分页器(您应该将它们添加到应用程序的 Gemfile 中):
Irwi::Paginators::WillPaginate
:基于will_paginate
宝石。Irwi::Paginators::Kaminari
:基于kaminari
宝石。Irwi::Paginators::None
:不执行任何操作的格式化器。
默认情况下,Irwi 会选择应用程序 Gemfile 中存在的第一个分页器。您也可以通过指定 Irwi.config.paginator
值来显式选择分页器,例如:
Irwi.config.paginator = Irwi::Paginators::WillPaginate.new
3. 项目API使用文档
Irwi 提供了一些方法和配置选项,您可以在您的应用程序中使用它们。
-
Irwi.config
:访问配置选项。 -
wiki_user
:辅助方法,用于渲染用户名或链接。 -
irwi_wiki
:生成器方法,用于创建维基相关的模型和控制器。 -
irwi_wiki_attachments
:生成器方法,用于添加附件功能。
4. 项目安装方式
请参考“安装指南”部分,其中包括将 Irwi 添加到 Gemfile 和执行相关命令的步骤。
通过上述步骤,您可以轻松地在您的 Ruby on Rails 4 应用程序中集成 Irwi 插件,并开始使用维基功能。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









