Malcolm项目中NetBox自动填充功能的子网过滤配置详解
背景介绍
Malcolm是一款开源的网络流量分析平台,它提供了与NetBox资产管理系统集成的能力。其中一项重要功能是"被动设备自动填充",即根据网络流量中检测到的设备IP地址,自动在NetBox中创建或更新设备记录。然而,并非所有IP地址都适合被自动填充到NetBox中,特别是那些动态分配的IP地址(如DHCP分配的地址)。
子网过滤机制
Malcolm通过NETBOX_AUTO_POPULATE_SUBNETS
环境变量提供了精细的子网过滤控制,让管理员能够精确指定哪些IP地址范围应该被自动填充到NetBox中。这个功能对于保持NetBox数据的准确性和整洁性至关重要。
基本过滤规则
-
默认行为:当该变量为空时,系统会自动填充所有私有IPv4和IPv6地址范围(包括RFC 1918和RFC 4193定义的地址空间)。
-
包含规则:直接列出CIDR表示的子网,表示只允许这些子网中的IP地址被自动填充。例如:
192.168.100.0/24
-
排除规则:在CIDR前加"!"表示排除该子网。例如:
!172.16.0.0/12
-
混合规则:可以同时使用包含和排除规则,系统会先匹配包含规则,再在匹配结果中应用排除规则。例如:
10.0.0.0/8,!10.0.10.0/16,10.0.10.5/32
这条规则表示:
- 允许10.0.0.0/8范围内的所有地址
- 但排除10.0.10.0/16子网
- 不过仍然允许10.0.10.5这个特定地址
-
特殊处理:网络基地址(如.0)和广播地址(如.255)不会被自动填充,无论过滤规则如何设置。
多站点支持
对于使用多个NetBox站点的环境,Malcolm支持为不同站点配置不同的子网过滤规则。语法格式为:
站点1:规则1,规则2;站点2:规则3,规则4;*:默认规则
其中:
- 站点可以用名称或数字ID表示
- 多个站点规则用分号(;)分隔
- 星号(*)表示默认规则,当没有匹配到特定站点规则时使用
示例:
site1:10.0.0.0/8,!10.0.10.0/16;site2:!172.16.0.0/12;*:!192.168.0.0/16
实际应用建议
-
DHCP范围排除:建议排除组织内使用的DHCP地址池,因为这些地址会频繁变化,不适合作为固定设备记录。
-
专用网络地址处理:如果使用专用网络分配的私有地址,应考虑是否要包含或排除这些地址。
-
IPv6考虑:对于IPv6地址,特别是ULA(唯一本地地址)范围(fc00::/7),需要明确是否要包含。
-
测试环境:建议先在测试环境中验证过滤规则,确保其按预期工作后再应用到生产环境。
-
文档记录:维护好子网过滤规则的文档,便于后续管理和故障排除。
技术实现原理
在底层实现上,Malcolm会:
- 首先检查IP地址是否为私有地址(根据RFC定义)
- 然后应用配置的子网过滤规则
- 对于多站点环境,会根据设备所属站点选择对应的规则集
- 最后,只有通过所有过滤检查的IP地址才会触发NetBox的自动填充操作
这种分层过滤机制确保了NetBox中只包含管理员明确允许的设备记录,避免了因动态地址或临时连接造成的"数据噪音"。
总结
Malcolm的NetBox自动填充子网过滤功能提供了企业级精细控制能力,使组织能够根据自身网络架构特点定制自动填充行为。通过合理配置这些规则,可以确保NetBox资产数据库的准确性和实用性,同时减少不必要的自动记录创建。对于拥有复杂网络环境或多站点部署的组织,多站点支持功能尤其有价值。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









