Malcolm项目中NetBox自动填充功能的子网过滤配置详解
背景介绍
Malcolm是一款开源的网络流量分析平台,它提供了与NetBox资产管理系统集成的能力。其中一项重要功能是"被动设备自动填充",即根据网络流量中检测到的设备IP地址,自动在NetBox中创建或更新设备记录。然而,并非所有IP地址都适合被自动填充到NetBox中,特别是那些动态分配的IP地址(如DHCP分配的地址)。
子网过滤机制
Malcolm通过NETBOX_AUTO_POPULATE_SUBNETS环境变量提供了精细的子网过滤控制,让管理员能够精确指定哪些IP地址范围应该被自动填充到NetBox中。这个功能对于保持NetBox数据的准确性和整洁性至关重要。
基本过滤规则
-
默认行为:当该变量为空时,系统会自动填充所有私有IPv4和IPv6地址范围(包括RFC 1918和RFC 4193定义的地址空间)。
-
包含规则:直接列出CIDR表示的子网,表示只允许这些子网中的IP地址被自动填充。例如:
192.168.100.0/24 -
排除规则:在CIDR前加"!"表示排除该子网。例如:
!172.16.0.0/12 -
混合规则:可以同时使用包含和排除规则,系统会先匹配包含规则,再在匹配结果中应用排除规则。例如:
10.0.0.0/8,!10.0.10.0/16,10.0.10.5/32这条规则表示:
- 允许10.0.0.0/8范围内的所有地址
- 但排除10.0.10.0/16子网
- 不过仍然允许10.0.10.5这个特定地址
-
特殊处理:网络基地址(如.0)和广播地址(如.255)不会被自动填充,无论过滤规则如何设置。
多站点支持
对于使用多个NetBox站点的环境,Malcolm支持为不同站点配置不同的子网过滤规则。语法格式为:
站点1:规则1,规则2;站点2:规则3,规则4;*:默认规则
其中:
- 站点可以用名称或数字ID表示
- 多个站点规则用分号(;)分隔
- 星号(*)表示默认规则,当没有匹配到特定站点规则时使用
示例:
site1:10.0.0.0/8,!10.0.10.0/16;site2:!172.16.0.0/12;*:!192.168.0.0/16
实际应用建议
-
DHCP范围排除:建议排除组织内使用的DHCP地址池,因为这些地址会频繁变化,不适合作为固定设备记录。
-
专用网络地址处理:如果使用专用网络分配的私有地址,应考虑是否要包含或排除这些地址。
-
IPv6考虑:对于IPv6地址,特别是ULA(唯一本地地址)范围(fc00::/7),需要明确是否要包含。
-
测试环境:建议先在测试环境中验证过滤规则,确保其按预期工作后再应用到生产环境。
-
文档记录:维护好子网过滤规则的文档,便于后续管理和故障排除。
技术实现原理
在底层实现上,Malcolm会:
- 首先检查IP地址是否为私有地址(根据RFC定义)
- 然后应用配置的子网过滤规则
- 对于多站点环境,会根据设备所属站点选择对应的规则集
- 最后,只有通过所有过滤检查的IP地址才会触发NetBox的自动填充操作
这种分层过滤机制确保了NetBox中只包含管理员明确允许的设备记录,避免了因动态地址或临时连接造成的"数据噪音"。
总结
Malcolm的NetBox自动填充子网过滤功能提供了企业级精细控制能力,使组织能够根据自身网络架构特点定制自动填充行为。通过合理配置这些规则,可以确保NetBox资产数据库的准确性和实用性,同时减少不必要的自动记录创建。对于拥有复杂网络环境或多站点部署的组织,多站点支持功能尤其有价值。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00