Stasis 静态站点动态框架技术文档
1. 安装指南
Stasis 是一个用于生成静态站点的动态框架,支持多种模板引擎。以下是安装 Stasis 的步骤:
通过 RubyGems 安装
Stasis 可以通过 RubyGems 进行安装。确保你已经安装了 Ruby 和 RubyGems,然后在终端中运行以下命令:
$ gem install stasis
安装完成后,你就可以在项目中使用 Stasis 了。
2. 项目的使用说明
基本使用
Stasis 的核心功能是将一个包含模板文件的目录树渲染为静态文件。假设你有一个如下的项目目录结构:
project/
index.html.haml
images/
image.png
在项目根目录下运行 stasis 命令:
$ cd project
$ stasis
Stasis 会生成一个 public 目录,并将模板文件渲染为静态文件:
project/
index.html.haml
images/
image.png
public/
index.html
images/
image.png
开发模式
在开发过程中,你可以使用 -d 参数启动开发模式,Stasis 会在文件保存时自动重新生成静态文件:
$ stasis -d
你还可以指定一个端口启动 HTTP 服务器:
$ stasis -d 3000
指定输出文件或目录
你可以通过 -o 参数指定只渲染特定的文件或目录:
$ stasis -o index.html.haml,subdirectory
更改输出目录
通过 -p 参数可以更改生成的静态文件的输出目录:
$ stasis -p ../public
3. 项目 API 使用文档
控制器
控制器包含在模板渲染之前执行的 Ruby 代码。你可以在任何目录层级中添加控制器文件 controller.rb。
before 块
在 controller.rb 中使用 before 块可以在模板渲染之前执行代码:
before 'index.html.haml' do
@something = true
end
@something 变量现在可以在 index.html.haml 模板中使用。
layout 方法
你可以通过 layout 方法设置默认布局或为特定模板设置布局:
layout 'layout.html.haml'
或者为特定模板设置布局:
layout 'index.html.haml' => 'layout.html.haml'
render 方法
在模板中使用 render 方法可以渲染局部模板:
%html
%body= render '_partial.html.haml'
在 before 块中也可以使用 render 方法:
before 'index.html.haml' do
@partial = render '_partial.html.haml'
end
instead 方法
instead 方法可以改变模板的输出:
before 'index.html.haml' do
instead render('subdirectory/index.html.haml')
end
helpers 方法
通过 helpers 方法可以定义辅助方法,这些方法可以在所有 before 块和模板中使用:
helpers do
def say_hello
'Hello'
end
end
ignore 方法
使用 ignore 方法可以忽略某些路径:
ignore /\/_.*/
priority 方法
通过 priority 方法可以改变文件的处理顺序:
priority /.*txt/ => 2, 'index.html.erb' => 1
4. 项目安装方式
Ruby 库方式
除了命令行工具,Stasis 还可以作为 Ruby 库使用。你可以通过以下方式实例化 Stasis 对象:
stasis = Stasis.new('/path/to/project/root')
你可以指定输出目录:
stasis = Stasis.new('/project', '/html')
渲染所有模板:
stasis.render
渲染特定模板或目录:
stasis.render('index.html.haml', 'subdirectory')
支持的模板引擎
Stasis 使用 Tilt 支持多种模板引擎,包括但不限于:
- ERB
- Haml
- Sass
- Less CSS
- Markdown
- CoffeeScript
完整的支持列表可以在项目的 README 文件中找到。
总结
Stasis 是一个功能强大的静态站点生成框架,支持多种模板引擎和灵活的控制器机制。通过本文档,你可以快速上手 Stasis,并利用其丰富的功能来构建高效的静态站点。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00