Raspberry Pi Pico SDK中PIO与DMA的16位数据传输问题解析
概述
在使用Raspberry Pi Pico SDK进行PIO(可编程输入输出)与DMA(直接内存访问)的16位数据传输时,开发者可能会遇到数据丢失或错位的问题。本文将深入分析这一问题的根源,并提供完整的解决方案。
问题现象
当尝试通过PIO的IN指令将数据通过DMA传输到内存缓冲区时,开发者可能会观察到以下异常现象:
- 数据传输过程中出现周期性停顿
- 缓冲区数据被清零而非接收预期数据
- 16位数据传输时出现数据错位或间隔零值
- 系统在运行一段时间后停止响应
根本原因分析
经过深入排查,发现问题主要由以下几个因素导致:
-
DMA请求配置错误:初始代码中
pio_get_dreq
的最后一个参数设置为true(针对TXF),而实际上应该为false(针对RXF)。 -
DMA地址对齐问题:16位数据传输需要特殊处理FIFO缓冲区的地址对齐。
-
自动推送配置冲突:PIO的自动推送功能与手动推送操作产生冲突。
完整解决方案
1. 正确的PIO程序配置
pio_sm_config config = test_program_get_default_config(offset);
sm_config_set_sideset_pins(&config, PIN_DEBUG);
pio_sm_set_consecutive_pindirs(pio, sm, PIN_DEBUG, 1, true);
pio_sm_init(pio, sm, offset, &config);
pio_gpio_init(pio, PIN_DEBUG);
sm_config_set_in_shift(&config, true, true, 16); // 16位移位
sm_config_set_in_pins(&config, PIN_D0); // 设置输入引脚
pio_sm_init(pio, sm, offset, &config);
pio_sm_set_enabled(pio, sm, true);
2. 正确的DMA配置
// 获取DMA通道
dma_chan = dma_claim_unused_channel(true);
// DMA配置
dma_config = dma_channel_get_default_config(dma_chan);
channel_config_set_transfer_data_size(&dma_config, DMA_SIZE_16); // 16位传输
channel_config_set_read_increment(&dma_config, false); // 读取地址不递增
channel_config_set_write_increment(&dma_config, true); // 写入地址递增
// 关键点:使用false参数配置RXF的DMA请求
channel_config_set_dreq(&dma_config, pio_get_dreq(pio, sm, false));
// 关键点:使用(io_rw_16*)类型转换并偏移1个16位单元
dma_channel_configure(
dma_chan,
&dma_config,
&buffer,
(io_rw_16*)&pio->rxf[sm] + 1,
BUFFER_SIZE,
true
);
3. PIO汇编程序示例
.program test
.side_set 1 opt
.wrap_target
in x, 16 side 1 [7] ; 从X寄存器读取16位数据
.wrap
技术要点解析
-
DMA请求方向:
pio_get_dreq
的第三个参数决定DMA请求是针对TXF(发送FIFO)还是RXF(接收FIFO)。对于输入操作必须设为false。 -
地址对齐处理:使用
(io_rw_16*)&pio->rxf[sm] + 1
确保从FIFO读取16位数据时地址正确对齐。 -
移位配置:
sm_config_set_in_shift
中的第三个参数必须与DMA传输大小匹配(本例中为16)。 -
自动推送:确保PIO程序中要么使用自动推送,要么完全手动控制推送,避免两者混用导致冲突。
性能优化建议
-
对于高速数据传输,考虑使用双缓冲技术减少中断处理时间。
-
适当调整PIO程序中的延迟周期([7])以匹配外设时序要求。
-
对于大数据量传输,可以考虑使用链式DMA减少CPU干预。
总结
通过正确配置DMA请求方向、处理地址对齐问题以及统一推送方式,可以可靠地实现Pico上PIO与DMA之间的16位数据传输。这一解决方案不仅适用于简单的数据采集场景,也可扩展应用于各种需要高效数据传输的应用中。
开发者在使用Pico SDK进行底层数据传输时,应当特别注意数据类型大小与地址对齐问题,这是确保数据完整性的关键因素。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









