Raspberry Pi Pico SDK中PIO与DMA的16位数据传输问题解析
概述
在使用Raspberry Pi Pico SDK进行PIO(可编程输入输出)与DMA(直接内存访问)的16位数据传输时,开发者可能会遇到数据丢失或错位的问题。本文将深入分析这一问题的根源,并提供完整的解决方案。
问题现象
当尝试通过PIO的IN指令将数据通过DMA传输到内存缓冲区时,开发者可能会观察到以下异常现象:
- 数据传输过程中出现周期性停顿
- 缓冲区数据被清零而非接收预期数据
- 16位数据传输时出现数据错位或间隔零值
- 系统在运行一段时间后停止响应
根本原因分析
经过深入排查,发现问题主要由以下几个因素导致:
-
DMA请求配置错误:初始代码中
pio_get_dreq的最后一个参数设置为true(针对TXF),而实际上应该为false(针对RXF)。 -
DMA地址对齐问题:16位数据传输需要特殊处理FIFO缓冲区的地址对齐。
-
自动推送配置冲突:PIO的自动推送功能与手动推送操作产生冲突。
完整解决方案
1. 正确的PIO程序配置
pio_sm_config config = test_program_get_default_config(offset);
sm_config_set_sideset_pins(&config, PIN_DEBUG);
pio_sm_set_consecutive_pindirs(pio, sm, PIN_DEBUG, 1, true);
pio_sm_init(pio, sm, offset, &config);
pio_gpio_init(pio, PIN_DEBUG);
sm_config_set_in_shift(&config, true, true, 16); // 16位移位
sm_config_set_in_pins(&config, PIN_D0); // 设置输入引脚
pio_sm_init(pio, sm, offset, &config);
pio_sm_set_enabled(pio, sm, true);
2. 正确的DMA配置
// 获取DMA通道
dma_chan = dma_claim_unused_channel(true);
// DMA配置
dma_config = dma_channel_get_default_config(dma_chan);
channel_config_set_transfer_data_size(&dma_config, DMA_SIZE_16); // 16位传输
channel_config_set_read_increment(&dma_config, false); // 读取地址不递增
channel_config_set_write_increment(&dma_config, true); // 写入地址递增
// 关键点:使用false参数配置RXF的DMA请求
channel_config_set_dreq(&dma_config, pio_get_dreq(pio, sm, false));
// 关键点:使用(io_rw_16*)类型转换并偏移1个16位单元
dma_channel_configure(
dma_chan,
&dma_config,
&buffer,
(io_rw_16*)&pio->rxf[sm] + 1,
BUFFER_SIZE,
true
);
3. PIO汇编程序示例
.program test
.side_set 1 opt
.wrap_target
in x, 16 side 1 [7] ; 从X寄存器读取16位数据
.wrap
技术要点解析
-
DMA请求方向:
pio_get_dreq的第三个参数决定DMA请求是针对TXF(发送FIFO)还是RXF(接收FIFO)。对于输入操作必须设为false。 -
地址对齐处理:使用
(io_rw_16*)&pio->rxf[sm] + 1确保从FIFO读取16位数据时地址正确对齐。 -
移位配置:
sm_config_set_in_shift中的第三个参数必须与DMA传输大小匹配(本例中为16)。 -
自动推送:确保PIO程序中要么使用自动推送,要么完全手动控制推送,避免两者混用导致冲突。
性能优化建议
-
对于高速数据传输,考虑使用双缓冲技术减少中断处理时间。
-
适当调整PIO程序中的延迟周期([7])以匹配外设时序要求。
-
对于大数据量传输,可以考虑使用链式DMA减少CPU干预。
总结
通过正确配置DMA请求方向、处理地址对齐问题以及统一推送方式,可以可靠地实现Pico上PIO与DMA之间的16位数据传输。这一解决方案不仅适用于简单的数据采集场景,也可扩展应用于各种需要高效数据传输的应用中。
开发者在使用Pico SDK进行底层数据传输时,应当特别注意数据类型大小与地址对齐问题,这是确保数据完整性的关键因素。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00