首页
/ 推荐:RAPiD——旋转感知的人体检测框架

推荐:RAPiD——旋转感知的人体检测框架

2024-05-29 23:34:57作者:董斯意

在您的头顶上方,鱼眼镜头正捕捉着世界。但如何有效地从这些广角图像中检测行人呢?RAPiD,一个创新的深度学习模型,专为此而来。

1、项目介绍

RAPiD是Rotation-Aware People Detection的简称,是一个基于PyTorch的开源实现项目。该模型旨在解决头顶俯视视角下,受鱼眼镜头畸变影响的行人检测问题。它是由MIT的研究人员开发,已在多个公开的鱼眼图像数据集上进行了训练和验证,并取得了出色的效果。

2、项目技术分析

RAPiD利用了先进的Darknet-53架构,经过适应性改造以处理旋转信息。模型通过训练数据中的实例分割,学习识别并定位图像中的行人,即使他们受到严重的几何变形。此外,代码库提供了详细的训练和评估指南,以及预训练模型,使得研究者和开发者可以快速上手。

3、项目及技术应用场景

  • 监控系统:鱼眼摄像头广泛应用于安全监控,RAPiD可以在不增加硬件成本的情况下提高监控系统的行人检测能力。
  • 自动驾驶:在车辆顶部安装的摄像头中,鱼眼镜头可以提供广阔的视野,RAPiD可以帮助车辆更好地理解和避开行人。
  • 机器人导航:对于无人机或地面机器人,理解周围环境中的行人位置至关重要,RAPiD能有效提升其感知性能。

4、项目特点

  • 旋转感知:专门针对鱼眼图像的旋转特性进行设计,提高了对图像失真的鲁棒性。
  • 高性能:在 Mirror Worlds, HABBOF 和 CEPDOF 数据集上的测试显示,该模型表现出强大的行人检测能力。
  • 易于复现:提供了详细训练和测试教程,以及预训练权重文件,用户可以直接运行代码体验效果。
  • 灵活性:支持对COCO数据集的训练,可进一步调整优化以适应各种场景。

如果您正在寻找一种高效且适用于鱼眼图像的人体检测解决方案,那么RAPiD无疑是一个值得尝试的选择。立即加入,一起探索这个旋转感知的世界吧!


请确保正确引用该项目:

Z. Duan, M.O. Tezcan, H. Nakamura, P. Ishwar and J. Konrad, 
“RAPiD: Rotation-Aware People Detection in Overhead Fisheye Images”, 
in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 
Omnidirectional Computer Vision in Research and Industry (OmniCV) Workshop, June 2020.
登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133