Diamond项目中的CSGO训练数据集规模解析
2025-07-08 02:19:42作者:滕妙奇
Diamond项目是一个基于行为克隆的CSGO游戏AI研究项目,其训练数据集的构建和使用方式对于理解该项目的技术实现至关重要。本文将详细解析该项目所使用的训练数据规模及其特点。
训练数据集概况
Diamond项目使用了两种不同来源的CSGO游戏数据集:
-
初始数据集:包含3.3小时(约190,000帧)的高水平人类游戏录像,这些数据全部采集自"dust_2"地图。该数据集以16Hz的频率记录了游戏观察状态和玩家操作(包括鼠标和键盘输入)。
-
扩展数据集:后期版本采用了规模更大的数据集,包含从死亡竞赛模式中收集的更多样化的游戏录像,同样专注于"dust_2"地图场景。
数据划分方式
项目团队对初始数据集进行了如下划分:
- 训练集:2.6小时(约150,000帧),占总数据的约79%
- 验证集:0.7小时(约40,000帧),占总数据的约21%
这种划分比例遵循了机器学习项目中常见的数据分配策略,既保证了模型有足够的训练样本,又能通过验证集有效评估模型性能。
数据采集特点
Diamond项目的数据采集具有几个值得注意的技术特点:
-
高频率采样:16Hz的采样率意味着每秒钟记录16次游戏状态和玩家操作,这种高时间分辨率对于捕捉玩家精细的操作策略至关重要。
-
专注单一地图:所有数据都来自"dust_2"地图,这种专注性有助于模型专门学习该地图中的战术和走位。
-
高水平玩家数据:数据源来自高水平玩家的游戏录像,确保了学习到的是有效的游戏策略而非随机行为。
训练数据的重要性
在行为克隆(Behavioral Cloning)方法中,训练数据的质量和数量直接决定了AI模型的性能上限。Diamond项目选择的这种数据规模:
- 足以让模型学习基本的游戏策略和操作模式
- 保持了合理的训练成本
- 通过高水平玩家数据确保了学习到的策略质量
对于希望复现或扩展该项目的开发者而言,理解这些数据特点有助于更好地设计自己的实验和训练流程。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134