Machine-Learning-for-High-Risk-Applications-Book 的安装和配置教程
2025-05-05 15:47:37作者:曹令琨Iris
1. 项目基础介绍和主要编程语言
本项目《Machine-Learning-for-High-Risk-Applications-Book》是一个开源项目,旨在为高风险应用领域提供机器学习解决方案的示例和指南。项目内容涵盖了机器学习在金融、医疗、自动驾驶等高风险行业中的应用实例,帮助读者理解并掌握如何在关键领域应用机器学习技术。本项目的主要编程语言是Python,这是由于其强大的数据处理能力和丰富的机器学习库支持。
2. 项目使用的关键技术和框架
项目使用了多种机器学习技术和框架,主要包括:
- Python:作为主要的编程语言。
- Scikit-learn:用于数据分析和机器学习算法的实现。
- TensorFlow或PyTorch:深度学习框架,用于构建和训练复杂的神经网络模型。
- Jupyter Notebook:用于编写代码和文档,实现交互式计算。
3. 项目安装和配置的准备工作及详细安装步骤
准备工作
在开始安装前,请确保您的系统中已经安装了以下软件:
- Python 3.x(建议使用最新版)
- pip(Python 包管理器)
- git(版本控制系统)
安装步骤
-
克隆项目仓库
打开命令行(终端),使用以下命令克隆项目仓库到本地:
git clone https://github.com/ml-for-high-risk-apps-book/Machine-Learning-for-High-Risk-Applications-Book.git -
安装Python依赖
在项目根目录下,使用pip安装项目所需的Python包:
pip install -r requirements.txt其中,
requirements.txt文件包含了项目运行所需的所有Python包。 -
启动Jupyter Notebook
在项目根目录下,启动Jupyter Notebook:
jupyter notebook这将启动Jupyter Notebook服务器,并在默认的Web浏览器中打开一个新的标签页,显示项目中的所有Notebook文件。
按照以上步骤操作,您应该能够成功安装和配置本项目。接下来,您可以开始阅读和运行项目中的示例代码,学习如何在高风险应用中使用机器学习。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
426
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
335
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
265
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
25
30