Neo项目网格组件增强:实现姓名列的模糊搜索功能
在Neo项目的前端开发中,大数据表格(grid)组件是核心功能之一。最近开发团队对ControlsContainer控件容器进行了功能增强,为其添加了针对名字(firstname)和姓氏(lastname)列的过滤字段支持,并实现了like操作符的模糊搜索功能。这一改进显著提升了用户在大数据场景下的查询体验。
功能背景
在数据处理场景中,表格组件通常需要处理大量数据记录。传统的前端表格组件往往只提供简单的分页和排序功能,当用户需要查找特定记录时,尤其是对文本字段进行模糊匹配时,往往力不从心。Neo项目团队针对这一痛点,为表格控件增加了基于like操作符的过滤功能。
技术实现
新功能主要围绕ControlsContainer控件容器展开,这是Neo项目中负责管理表格过滤、排序等控制元素的容器组件。开发团队为其添加了两个新的过滤字段:
- 名字(firstname)过滤字段
- 姓氏(lastname)过滤字段
这两个字段都支持like操作符,意味着用户可以进行模糊匹配查询。例如,当用户输入"Joh"时,系统会返回所有名字包含"Joh"的记录(如"John"、"Johnson"等)。
实现细节
在技术实现上,开发团队采用了以下方案:
-
前端过滤逻辑:在ControlsContainer组件内部实现了基于like操作符的字符串匹配算法,确保在客户端就能快速响应过滤请求。
-
性能优化:考虑到大数据场景,实现时特别注意了性能优化,避免因频繁过滤操作导致的界面卡顿。
-
用户体验:过滤字段的UI设计遵循了Neo项目的整体风格,同时提供了清晰的输入提示和即时反馈。
应用价值
这一功能增强为Neo项目带来了以下优势:
-
提升查询效率:用户不再需要精确输入完整姓名即可找到相关记录。
-
改善用户体验:模糊搜索更符合人类记忆特点,用户只需记住姓名片段即可查询。
-
增强功能完整性:使Neo的表格组件在功能上更加完善,与其他主流前端框架看齐。
未来展望
虽然当前实现了基本的模糊搜索功能,但团队已经规划了进一步的优化方向:
- 支持更多类型的模糊匹配模式(如前缀匹配、后缀匹配等)
- 增加搜索历史记录功能
- 优化大数据量下的搜索性能
这一功能增强体现了Neo项目团队对用户体验的持续关注和技术创新,为开发者提供了更加强大和易用的前端组件库。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00