OpenBMB/OmniLMM项目中MiniCPM-V多模态模型的技术实现解析
2025-05-11 03:31:06作者:谭伦延
在OpenBMB/OmniLMM项目中,MiniCPM-V系列作为重要的多模态大模型,其技术实现涉及多个关键模块的协同工作。本文将深入分析该模型在llama.cpp框架下的实现细节,特别是视觉处理模块(VPM)与重采样模块(Resampler)的交互机制,以及多模态输入的预处理流程。
视觉处理模块的架构设计
MiniCPM-V模型采用了双模块设计来处理视觉输入:
- 视觉处理模块(VPM):基于SigLIP架构,负责从原始图像中提取基础视觉特征
- 重采样模块(Resampler):将VPM输出的特征进行进一步处理和降维
在实际部署到llama.cpp时,这两个模块虽然被分别导出为独立的文件,但在运行时会被统一加载和使用。这种设计既保持了模块间的独立性,又确保了运行时的效率。
多模态输入的预处理流程
与Python版本不同,llama.cpp实现采用了分阶段处理策略:
-
视觉特征提取阶段:
- 图像通过VPM和Resampler处理
- 生成固定维度的视觉嵌入(embedding)
- 每个图像对应64个token,每个token维度为3584
-
文本特征处理阶段:
- 文本内容通过语言模型进行预处理
- 生成文本token的嵌入表示
-
多模态融合阶段:
- 在文本嵌入前后分别插入特殊的图像标记
<image>和</image> - 将视觉嵌入插入到这两个标记对应的位置
- 形成完整的多模态输入序列
- 在文本嵌入前后分别插入特殊的图像标记
这种两阶段处理方式特别适合边缘设备,可以更好地利用有限的计算资源。
多图支持的技术实现
对于多图像输入的处理,技术实现上有以下特点:
- 每张图像独立通过VPM和Resampler处理
- 生成的视觉嵌入在序列维度上进行拼接
- 例如10张图像将产生640个视觉token(10×64)
- 这些视觉token被插入到文本序列的指定位置
值得注意的是,虽然Python版本和llama.cpp版本的实现方式不同,但通过合理的嵌入替换,可以实现相同的多图推理效果。
未来扩展方向
基于当前架构,可以预见以下扩展可能:
- 音频模态支持:类似视觉处理流程,增加音频特征提取模块
- 跨模态注意力机制:增强不同模态间的交互能力
- 动态token分配:根据输入内容复杂度自适应分配token数量
- 量化优化:针对边缘设备进一步优化模型大小和推理速度
这种模块化设计为OpenBMB/OmniLMM项目的多模态能力扩展提供了良好的基础架构支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
探索未来显示技术:Adafruit_SH1106 图形库 推荐使用 taggingJS:一款轻量级的前端标签插件!【亲测免费】 探索像素级完美的结构化运动:PixSFM 推荐开源项目:DropPoint - 让拖放操作更简单【亲测免费】 推荐开源项目:picocom——小巧而强大的串口通信工具 推荐使用:NATS .NET 客户端【亲测免费】 推荐开源项目:MiracleCast - 智能无线显示实现 探索安全新维度:backdoor-apk 动态后门注入工具 探秘Viasfora:Visual Studio 2022的文本编辑增强利器 推荐使用:go-reuseport - 实现高效端口复用的Go语言库
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
233
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704