OpenBMB/OmniLMM项目中MiniCPM-V多模态模型的技术实现解析
2025-05-11 22:59:04作者:谭伦延
在OpenBMB/OmniLMM项目中,MiniCPM-V系列作为重要的多模态大模型,其技术实现涉及多个关键模块的协同工作。本文将深入分析该模型在llama.cpp框架下的实现细节,特别是视觉处理模块(VPM)与重采样模块(Resampler)的交互机制,以及多模态输入的预处理流程。
视觉处理模块的架构设计
MiniCPM-V模型采用了双模块设计来处理视觉输入:
- 视觉处理模块(VPM):基于SigLIP架构,负责从原始图像中提取基础视觉特征
- 重采样模块(Resampler):将VPM输出的特征进行进一步处理和降维
在实际部署到llama.cpp时,这两个模块虽然被分别导出为独立的文件,但在运行时会被统一加载和使用。这种设计既保持了模块间的独立性,又确保了运行时的效率。
多模态输入的预处理流程
与Python版本不同,llama.cpp实现采用了分阶段处理策略:
-
视觉特征提取阶段:
- 图像通过VPM和Resampler处理
- 生成固定维度的视觉嵌入(embedding)
- 每个图像对应64个token,每个token维度为3584
-
文本特征处理阶段:
- 文本内容通过语言模型进行预处理
- 生成文本token的嵌入表示
-
多模态融合阶段:
- 在文本嵌入前后分别插入特殊的图像标记
<image>
和</image>
- 将视觉嵌入插入到这两个标记对应的位置
- 形成完整的多模态输入序列
- 在文本嵌入前后分别插入特殊的图像标记
这种两阶段处理方式特别适合边缘设备,可以更好地利用有限的计算资源。
多图支持的技术实现
对于多图像输入的处理,技术实现上有以下特点:
- 每张图像独立通过VPM和Resampler处理
- 生成的视觉嵌入在序列维度上进行拼接
- 例如10张图像将产生640个视觉token(10×64)
- 这些视觉token被插入到文本序列的指定位置
值得注意的是,虽然Python版本和llama.cpp版本的实现方式不同,但通过合理的嵌入替换,可以实现相同的多图推理效果。
未来扩展方向
基于当前架构,可以预见以下扩展可能:
- 音频模态支持:类似视觉处理流程,增加音频特征提取模块
- 跨模态注意力机制:增强不同模态间的交互能力
- 动态token分配:根据输入内容复杂度自适应分配token数量
- 量化优化:针对边缘设备进一步优化模型大小和推理速度
这种模块化设计为OpenBMB/OmniLMM项目的多模态能力扩展提供了良好的基础架构支持。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程中屏幕放大器知识点优化分析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp课程页面空白问题的技术分析与解决方案
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
211
2.21 K

暂无简介
Dart
520
115

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
87

React Native鸿蒙化仓库
JavaScript
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194