React Native Screens 库中 libfbjni.so 冲突问题的分析与解决
问题背景
在使用 React Native 开发 Android 应用时,许多开发者遇到了一个常见的构建错误,特别是在集成 react-native-screens 库后。这个错误表现为在构建过程中出现 libfbjni.so 文件冲突,导致构建失败。该问题主要影响使用 React Native 0.76.x 版本和 react-native-screens 3.35.0 及以上版本的项目。
错误现象
当开发者在项目中添加 react-native-screens 库后,执行 Android Studio 的"Make Project"或"Rebuild Project"操作时,会遇到如下错误信息:
Execution failed for task ':react-native-screens:mergeDebugAndroidTestNativeLibs'
2 files found with path 'lib/arm64-v8a/libfbjni.so' from inputs:
错误表明系统在构建过程中发现了两个相同路径的 libfbjni.so 文件,一个来自 react-native-screens 的构建中间产物,另一个来自 React Native 的缓存目录。
问题根源
这个问题的本质是 Android 构建系统中的库文件冲突。libfbjni.so 是 Facebook 提供的 JNI 库,被 React Native 框架和 react-native-screens 库同时依赖。在构建过程中,Gradle 发现两个相同名称的库文件但来自不同路径,导致构建失败。
值得注意的是,这个问题通常只在使用 Android Studio 进行"Rebuild Project"时出现,而通过命令行构建 APK 或 bundle 时可能不会出现。
解决方案
1. 清理构建缓存
首先尝试清理项目构建缓存和 Gradle 缓存:
- 删除项目目录下的 node_modules 文件夹
- 删除 android/app/build 目录
- 删除 android/app/.cxx 目录
- 删除 android/build 目录
- 清理 Gradle 缓存 (~/.gradle/caches)
2. 修改 react-native-screens 的构建配置
如果清理缓存不能解决问题,可以修改 react-native-screens 库的构建配置,明确排除冲突的库文件:
在 node_modules/react-native-screens/android/build.gradle 文件中,找到 packagingOptions 部分,添加以下排除规则:
packagingOptions {
excludes = [
"META-INF",
"META-INF/**",
"**/libjsi.so",
"**/libc++_shared.so",
"**/libreact_render*.so",
"**/libreactnativejni.so",
"**/libreact_performance_timeline.so",
"**/libfbjni.so", // 新增排除规则
"**/libreactnative.so" // 新增排除规则
]
}
3. 使用 patch-package 持久化修改
为了避免每次安装依赖后都需要手动修改,可以使用 patch-package 工具来持久化这些修改:
- 安装 patch-package:
npm install patch-package --save-dev - 修改 node_modules/react-native-screens/android/build.gradle 文件
- 运行
npx patch-package react-native-screens - 这将在项目根目录创建 patches 文件夹,保存你的修改
预防措施
- 保持 React Native 和 react-native-screens 版本的最新状态
- 定期清理构建缓存
- 考虑在 CI/CD 流程中加入缓存清理步骤
- 对于团队项目,使用 patch-package 共享构建配置修改
总结
libfbjni.so 冲突问题是 React Native 生态系统中常见的构建问题之一,主要源于库之间的依赖关系管理。通过理解问题的本质并应用上述解决方案,开发者可以有效地解决这一构建障碍,确保项目的顺利构建和运行。
对于长期项目维护,建议关注 React Native 和 react-native-screens 的版本更新,因为官方可能会在未来版本中解决这类依赖冲突问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00