解决Self-LLM项目中ChatGLM3微调保存模型失败问题分析
2025-05-15 11:27:50作者:卓艾滢Kingsley
在Self-LLM项目中使用ChatGLM3进行微调时,许多开发者遇到了模型保存失败的问题,错误提示为"TypeError: Object of type set is not JSON serializable"。这个问题看似简单,但背后涉及到模型版本兼容性、参数序列化机制等深层次的技术细节。
问题现象与背景
当开发者尝试使用Hugging Face的Trainer对ChatGLM3进行微调后保存模型时,系统会抛出JSON序列化错误。具体表现为在训练过程中或训练完成后调用save_model()或save_pretrained()方法时失败。这一问题在设置gradient_checkpointing=True时尤为明显,但即使不启用该选项,最终保存时仍会出现同样错误。
错误原因深度分析
经过技术团队的深入排查,发现问题根源在于ChatGLM3模型的最新版本与PEFT(Parameter-Efficient Fine-Tuning)库的兼容性问题。具体表现为:
- JSON序列化失败:模型配置中包含Python的set类型数据,而JSON标准不支持直接序列化集合类型
- 版本兼容性问题:ChatGLM团队在Hugging Face模型库中更新了模型实现,新版本的内部脚本与PEFT库的适配出现断层
- 梯度检查点冲突:当启用gradient_checkpointing时,会触发"element 0 of tensors does not require grad"错误,这需要通过调用enable_input_require_grads()方法临时解决
解决方案与实践建议
针对这一问题,技术团队提供了多层次的解决方案:
-
使用稳定版本模型:
- 从ModelScope平台获取较老版本的ChatGLM3模型,这些版本与PEFT库的兼容性更好
- 等待技术团队提供经过验证的AutoDL镜像,其中包含稳定版本的模型实现
-
技术变通方案:
- 对于必须使用最新版本的情况,可以尝试手动修改模型配置,将set类型转换为list
- 在get_peft_model调用前显式启用输入梯度要求(model.enable_input_require_grads())
-
长期建议:
- 关注ChatGLM官方团队的更新,等待他们对PEFT适配问题的修复
- 理解本教程的核心目标是掌握Hugging Face微调流程和PEFT使用方法,而非特定模型的内部实现
技术启示与总结
这一问题的出现反映了开源生态中版本管理的复杂性。对于大型语言模型项目,特别是像ChatGLM这样快速迭代的模型,开发者需要注意:
- 模型实现与周边工具链的版本兼容性
- 官方更新可能引入的breaking changes
- 在production环境中使用特定版本的重要性
Self-LLM项目团队将持续关注这一问题的发展,并为社区提供稳定的解决方案。建议开发者在遇到类似问题时,可以先尝试其他已验证兼容的模型(如Qwen或Deepseek)完成学习流程,待ChatGLM的兼容性问题解决后再进行专项实践。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869