解决Self-LLM项目中ChatGLM3微调保存模型失败问题分析
2025-05-15 06:42:35作者:卓艾滢Kingsley
在Self-LLM项目中使用ChatGLM3进行微调时,许多开发者遇到了模型保存失败的问题,错误提示为"TypeError: Object of type set is not JSON serializable"。这个问题看似简单,但背后涉及到模型版本兼容性、参数序列化机制等深层次的技术细节。
问题现象与背景
当开发者尝试使用Hugging Face的Trainer对ChatGLM3进行微调后保存模型时,系统会抛出JSON序列化错误。具体表现为在训练过程中或训练完成后调用save_model()或save_pretrained()方法时失败。这一问题在设置gradient_checkpointing=True时尤为明显,但即使不启用该选项,最终保存时仍会出现同样错误。
错误原因深度分析
经过技术团队的深入排查,发现问题根源在于ChatGLM3模型的最新版本与PEFT(Parameter-Efficient Fine-Tuning)库的兼容性问题。具体表现为:
- JSON序列化失败:模型配置中包含Python的set类型数据,而JSON标准不支持直接序列化集合类型
- 版本兼容性问题:ChatGLM团队在Hugging Face模型库中更新了模型实现,新版本的内部脚本与PEFT库的适配出现断层
- 梯度检查点冲突:当启用gradient_checkpointing时,会触发"element 0 of tensors does not require grad"错误,这需要通过调用enable_input_require_grads()方法临时解决
解决方案与实践建议
针对这一问题,技术团队提供了多层次的解决方案:
-
使用稳定版本模型:
- 从ModelScope平台获取较老版本的ChatGLM3模型,这些版本与PEFT库的兼容性更好
- 等待技术团队提供经过验证的AutoDL镜像,其中包含稳定版本的模型实现
-
技术变通方案:
- 对于必须使用最新版本的情况,可以尝试手动修改模型配置,将set类型转换为list
- 在get_peft_model调用前显式启用输入梯度要求(model.enable_input_require_grads())
-
长期建议:
- 关注ChatGLM官方团队的更新,等待他们对PEFT适配问题的修复
- 理解本教程的核心目标是掌握Hugging Face微调流程和PEFT使用方法,而非特定模型的内部实现
技术启示与总结
这一问题的出现反映了开源生态中版本管理的复杂性。对于大型语言模型项目,特别是像ChatGLM这样快速迭代的模型,开发者需要注意:
- 模型实现与周边工具链的版本兼容性
- 官方更新可能引入的breaking changes
- 在production环境中使用特定版本的重要性
Self-LLM项目团队将持续关注这一问题的发展,并为社区提供稳定的解决方案。建议开发者在遇到类似问题时,可以先尝试其他已验证兼容的模型(如Qwen或Deepseek)完成学习流程,待ChatGLM的兼容性问题解决后再进行专项实践。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1