首页
/ RagaAI-Catalyst项目中的LLM调用成本计算问题解析

RagaAI-Catalyst项目中的LLM调用成本计算问题解析

2025-05-14 16:06:14作者:宣海椒Queenly

问题背景

在RagaAI-Catalyst项目的开发过程中,开发团队发现了一个与大型语言模型(LLM)调用成本计算相关的关键问题。当使用Azure OpenAI服务进行LLM调用时,系统会抛出KeyError异常,提示缺少'input_cost_per_token'键值。这个问题直接影响了项目的成本追踪功能,导致无法准确计算API调用的费用。

问题现象

在项目运行过程中,当开发者尝试通过Azure OpenAI服务进行LLM调用时,系统会在process_llm_result方法中抛出异常。具体表现为:

  1. 当使用@tracer.trace_llm装饰器标记的LLM调用函数执行时
  2. 系统尝试计算输入token成本时失败
  3. 错误信息明确指出缺少'input_cost_per_token'键
  4. 问题会级联影响到上层agent的执行

技术分析

根本原因

该问题的根本原因在于模型成本字典(model_cost)中缺少必要的键值对。在LLM调用过程中,系统需要以下关键信息来计算成本:

  1. 输入token成本(input_cost_per_token)
  2. 输出token成本(output_cost_per_token)

然而,当前的实现假设这些键值总是存在,当Azure OpenAI服务的特定模型配置未提供这些值时,就会导致KeyError异常。

影响范围

这个问题影响了所有使用以下功能的场景:

  1. 成本追踪功能
  2. LLM调用监控
  3. 基于token使用量的预算控制
  4. 性能分析仪表板

解决方案

项目团队在v1.2分支中修复了这个问题,主要采取了以下措施:

  1. 增加了对模型成本字典的完整性检查
  2. 为缺失的键值提供了合理的默认值
  3. 改进了错误处理机制,确保即使缺少某些成本参数也能继续执行
  4. 添加了日志记录,帮助开发者诊断配置问题

最佳实践建议

为了避免类似问题,建议开发者在集成LLM服务时:

  1. 总是检查成本参数是否完整
  2. 为关键参数设置合理的默认值
  3. 实现完善的错误处理机制
  4. 在文档中明确记录所需的配置参数
  5. 考虑不同云服务提供商(如Azure OpenAI)可能存在的参数差异

总结

这个问题的解决不仅修复了当前的异常情况,还为项目建立了更健壮的成本计算框架。通过这次经验,项目团队加强了对第三方服务集成的错误处理能力,提高了系统的整体稳定性。对于使用RagaAI-Catalyst的开发者来说,升级到包含此修复的版本将获得更可靠的LLM调用追踪体验。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
136
1.89 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
71
63
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.28 K
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
918
550
PaddleOCRPaddleOCR
飞桨多语言OCR工具包(实用超轻量OCR系统,支持80+种语言识别,提供数据标注与合成工具,支持服务器、移动端、嵌入式及IoT设备端的训练与部署) Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
46
1
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
273
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
59
16