RagaAI-Catalyst项目中的LLM调用成本计算问题解析
2025-05-14 16:06:14作者:宣海椒Queenly
问题背景
在RagaAI-Catalyst项目的开发过程中,开发团队发现了一个与大型语言模型(LLM)调用成本计算相关的关键问题。当使用Azure OpenAI服务进行LLM调用时,系统会抛出KeyError异常,提示缺少'input_cost_per_token'键值。这个问题直接影响了项目的成本追踪功能,导致无法准确计算API调用的费用。
问题现象
在项目运行过程中,当开发者尝试通过Azure OpenAI服务进行LLM调用时,系统会在process_llm_result方法中抛出异常。具体表现为:
- 当使用@tracer.trace_llm装饰器标记的LLM调用函数执行时
- 系统尝试计算输入token成本时失败
- 错误信息明确指出缺少'input_cost_per_token'键
- 问题会级联影响到上层agent的执行
技术分析
根本原因
该问题的根本原因在于模型成本字典(model_cost)中缺少必要的键值对。在LLM调用过程中,系统需要以下关键信息来计算成本:
- 输入token成本(input_cost_per_token)
- 输出token成本(output_cost_per_token)
然而,当前的实现假设这些键值总是存在,当Azure OpenAI服务的特定模型配置未提供这些值时,就会导致KeyError异常。
影响范围
这个问题影响了所有使用以下功能的场景:
- 成本追踪功能
- LLM调用监控
- 基于token使用量的预算控制
- 性能分析仪表板
解决方案
项目团队在v1.2分支中修复了这个问题,主要采取了以下措施:
- 增加了对模型成本字典的完整性检查
- 为缺失的键值提供了合理的默认值
- 改进了错误处理机制,确保即使缺少某些成本参数也能继续执行
- 添加了日志记录,帮助开发者诊断配置问题
最佳实践建议
为了避免类似问题,建议开发者在集成LLM服务时:
- 总是检查成本参数是否完整
- 为关键参数设置合理的默认值
- 实现完善的错误处理机制
- 在文档中明确记录所需的配置参数
- 考虑不同云服务提供商(如Azure OpenAI)可能存在的参数差异
总结
这个问题的解决不仅修复了当前的异常情况,还为项目建立了更健壮的成本计算框架。通过这次经验,项目团队加强了对第三方服务集成的错误处理能力,提高了系统的整体稳定性。对于使用RagaAI-Catalyst的开发者来说,升级到包含此修复的版本将获得更可靠的LLM调用追踪体验。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0113AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
217
2.23 K

暂无简介
Dart
523
116

React Native鸿蒙化仓库
JavaScript
210
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
982
580

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
564
87

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
33
0