Ledger Web 技术文档
本文档将详细介绍如何安装、使用和配置 Ledger Web 项目,以及如何通过其 API 进行操作。
1. 安装指南
在开始安装之前,请确保您的系统中已安装 PostgreSQL 9.0 或更高版本。
安装步骤:
$ gem install ledger_web
$ createdb ledger
创建数据库后,您可以通过以下命令启动 Ledger Web:
$ ledger_web
启动成功后,使用浏览器打开 http://localhost:9090
,您可以看到一些示例报告。
2. 项目使用说明
Ledger Web 是一个基于 Web 的报告系统,它使用 PostgreSQL 作为后端数据库,并与 Ledger 命令行会计系统配合使用。
配置
Ledger Web 的配置非常简单。创建一个名为 ~/.ledger_web/config.rb
的文件,内容如下:
LedgerWeb::Config.new do |config|
config.set :database_url, "postgres://localhost/ledger"
end
:database_url
应指向您的数据库实例。它可以不是本地的,但配置的用户需要能够修改模式。还有许多其他设置可以配置:
:index_report
是 Ledger Web 在首次打开时将浏览器重定向到的报告。默认为:help
:port
是 Ledger Web 将运行在其上的端口。默认为9090
:ledger_file
是 Ledger Web 将读取的文件。默认为环境变量LEDGER_FILE
:ledger_bin_path
是 ledger 二进制文件的路径。默认在PATH
中查找
编写报告
报告只是存储在 ~/.ledger_web/reports
目录中的 HTML ERB 文件。Ledger Web 提供了一些有用的辅助方法,让您能够轻松定义 SQL 查询。以下是一个报告示例:
<% @query = query do %>
select
xtn_month,
account,
sum(amount)
from
ledger
where
(account ~ 'Income'
or account ~ 'Expenses')
and xtn_date between :from and :to
group by
xtn_month,
account
<% end %>
<%= table @query %>
query
辅助方法接受一个 SQL 块并返回一个 LedgerWeb::Report
实例。它可以接受一些选项:
:pivot
是要透视的列的名称。:pivot_sort_order
指定透视列的排序方式。可以是asc
或desc
。默认为asc
。
Ledger Web 使用 Twitter Bootstrap 进行格式化,因此您可以使用任何您想要的方式来格式化您的报告。
table
辅助方法接受一个由 query
辅助方法产生的查询和一些选项,并构建一个 HTML 表格。它还可以接受一个 :links
选项,它将表格中的值链接化。以下是一个例子:
:links => {"Account" => "/reports/register?account=:1"}
这表示 Account
列中的每个值将被一个 <a>
标签包围,指向 /reports/register?account=:1
,其中 :1
将被该特定行的第一列的值替换。
3. 项目 API 使用文档
Ledger Web 提供了一个简单的 API,您可以通过它在不同的报告之间进行链接。以下是 API 的基本使用方法:
- 使用
:links
选项在报告中创建链接。 - 链接模板可以使用
:1
表示列值,:title
表示列标题。
4. 项目安装方式
Ledger Web 可以通过以下步骤进行安装:
- 确保系统已安装 PostgreSQL 9.0 或更高版本。
- 使用
gem install ledger_web
命令安装 Ledger Web。 - 创建一个名为
ledger
的 PostgreSQL 数据库。 - 使用
ledger_web
命令启动 Ledger Web。 - 打开浏览器,访问
http://localhost:9090
。
以上是 Ledger Web 的基本安装和使用方法。通过自定义配置和编写报告,您可以根据需要创建各种会计报告。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









