Amazon EKS AMI 中 hpc6a.48xlarge 实例在政府云区域的拓扑发现问题分析
在 Amazon EKS 环境中使用 hpc6a.48xlarge 实例类型时,特别是在政府云区域(如 us-gov-west-1)部署时,可能会遇到节点初始化后持续保留 node.cloudprovider.kubernetes.io/uninitialized=true:NoSchedule 污点的问题。这个问题源于 Kubernetes 云控制器管理器(cloud-controller-manager)与 AWS EC2 API 的交互异常。
问题背景
当 Kubernetes 集群在 AWS 环境中运行时,cloud-controller-manager 负责与 AWS API 交互以完成节点初始化等任务。对于 hpc6a.48xlarge 这类高性能计算实例,控制器会尝试调用 EC2 的 DescribeInstanceTopology API 来获取实例拓扑信息。然而,在政府云区域,虽然 hpc6a.48xlarge 实例类型可用,但 DescribeInstanceTopology API 却不受支持。
根本原因分析
问题发生在 cloud-provider-aws 组件的拓扑发现逻辑中。正常情况下,当 API 在某个区域不可用时,控制器应该能够识别并记录该区域为不支持拓扑发现的区域,从而避免后续重复调用。但在近期(2025年6月24日后),EC2 API 的错误响应格式发生了变化,导致现有的错误处理逻辑无法正确识别这种"API不支持"的情况。
具体表现为:
- 控制器持续尝试调用 DescribeInstanceTopology API
 - 由于 API 在政府云区域不可用,请求失败
 - 错误处理逻辑未能正确识别这种失败情况
 - 控制器进入无限重试循环
 - 节点初始化流程无法完成,污点无法移除
 
影响范围
此问题主要影响:
- 使用 hpc6a.48xlarge 或其他需要拓扑发现的实例类型
 - 部署在政府云区域(如 us-gov-west-1)的集群
 - 使用较新版本(2025年6月24日后)AMI 的节点
 
临时解决方案
在官方修复发布前,可以通过以下方法临时解决问题:
- 
手动添加拓扑标签:为节点或节点组添加拓扑标签,绕过拓扑发现逻辑:
topology.k8s.aws/network-node-layer-1: "nn1" - 
降级 AMI 版本:回滚到2025年6月24日前的 AMI 版本,这些版本中的错误处理逻辑仍能正常工作。
 
长期解决方案
AWS 团队已经确认并修复了此问题。建议用户:
- 更新到最新版本的 cloud-controller-manager
 - 使用最新发布的 EKS AMI
 - 监控节点初始化过程,确认污点按预期移除
 
最佳实践建议
对于在特殊区域(如政府云)部署 Kubernetes 集群的用户,建议:
- 在正式部署前,充分测试节点初始化流程
 - 监控 cloud-controller-manager 日志,及时发现类似问题
 - 保持 AMI 和组件版本更新,以获取最新的修复和改进
 
通过理解这一问题的背景和解决方案,用户可以更好地在政府云等特殊环境中部署和管理 EKS 集群,确保计算资源的正常调度和使用。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00