Amazon EKS AMI 中 hpc6a.48xlarge 实例在政府云区域的拓扑发现问题分析
在 Amazon EKS 环境中使用 hpc6a.48xlarge 实例类型时,特别是在政府云区域(如 us-gov-west-1)部署时,可能会遇到节点初始化后持续保留 node.cloudprovider.kubernetes.io/uninitialized=true:NoSchedule 污点的问题。这个问题源于 Kubernetes 云控制器管理器(cloud-controller-manager)与 AWS EC2 API 的交互异常。
问题背景
当 Kubernetes 集群在 AWS 环境中运行时,cloud-controller-manager 负责与 AWS API 交互以完成节点初始化等任务。对于 hpc6a.48xlarge 这类高性能计算实例,控制器会尝试调用 EC2 的 DescribeInstanceTopology API 来获取实例拓扑信息。然而,在政府云区域,虽然 hpc6a.48xlarge 实例类型可用,但 DescribeInstanceTopology API 却不受支持。
根本原因分析
问题发生在 cloud-provider-aws 组件的拓扑发现逻辑中。正常情况下,当 API 在某个区域不可用时,控制器应该能够识别并记录该区域为不支持拓扑发现的区域,从而避免后续重复调用。但在近期(2025年6月24日后),EC2 API 的错误响应格式发生了变化,导致现有的错误处理逻辑无法正确识别这种"API不支持"的情况。
具体表现为:
- 控制器持续尝试调用 DescribeInstanceTopology API
- 由于 API 在政府云区域不可用,请求失败
- 错误处理逻辑未能正确识别这种失败情况
- 控制器进入无限重试循环
- 节点初始化流程无法完成,污点无法移除
影响范围
此问题主要影响:
- 使用 hpc6a.48xlarge 或其他需要拓扑发现的实例类型
- 部署在政府云区域(如 us-gov-west-1)的集群
- 使用较新版本(2025年6月24日后)AMI 的节点
临时解决方案
在官方修复发布前,可以通过以下方法临时解决问题:
-
手动添加拓扑标签:为节点或节点组添加拓扑标签,绕过拓扑发现逻辑:
topology.k8s.aws/network-node-layer-1: "nn1" -
降级 AMI 版本:回滚到2025年6月24日前的 AMI 版本,这些版本中的错误处理逻辑仍能正常工作。
长期解决方案
AWS 团队已经确认并修复了此问题。建议用户:
- 更新到最新版本的 cloud-controller-manager
- 使用最新发布的 EKS AMI
- 监控节点初始化过程,确认污点按预期移除
最佳实践建议
对于在特殊区域(如政府云)部署 Kubernetes 集群的用户,建议:
- 在正式部署前,充分测试节点初始化流程
- 监控 cloud-controller-manager 日志,及时发现类似问题
- 保持 AMI 和组件版本更新,以获取最新的修复和改进
通过理解这一问题的背景和解决方案,用户可以更好地在政府云等特殊环境中部署和管理 EKS 集群,确保计算资源的正常调度和使用。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00