Milvus集群中MinIO存储异常膨胀问题分析与解决方案
问题背景
在生产环境中部署的Milvus向量数据库集群出现了存储空间异常膨胀的情况。该集群管理着约3000万条向量数据,向量维度为512,采用fp16格式存储。理论上原始向量数据约为30GB,加上索引开销后预计总数据量约为78GB(考虑MinIO的纠删码冗余)。然而实际MinIO存储中仅insert_log文件就达到了573GB,远超预期。
存储计算分析
让我们详细计算一下理论存储需求:
- 原始向量数据:3000万条 × 512维 × 2字节(fp16) ≈ 30GB
- 考虑HNSW索引30%开销:30GB × 1.3 ≈ 39GB
- MinIO采用4节点纠删码,相当于2倍冗余:39GB × 2 ≈ 78GB
- 平均每节点存储:78GB ÷ 4 ≈ 19.5GB
实际存储却达到了573GB,存在明显异常。这表明系统中可能存在以下问题:
可能原因分析
-
垃圾回收机制失效:Milvus的垃圾回收(Garbage Collection)机制未能及时清理不再需要的数据文件,特别是insert_log文件。垃圾回收器通过对比元数据判断哪些文件可以安全删除。
-
频繁的写入操作:包括重复的flush操作、upsert操作或删除操作,这些都会导致存储空间的临时膨胀。如果系统在写入过程中出现节点崩溃等问题,可能导致中间状态数据未被正确清理。
-
索引构建问题:不同类型的索引对存储空间的需求差异较大。HNSW索引通常需要额外30%空间,但如果索引构建过程中出现问题,可能导致存储空间异常增长。
-
版本兼容性问题:早期版本的Milvus(如2.4.6)可能存在垃圾回收机制的缺陷,导致存储空间无法及时释放。
解决方案
-
升级Milvus版本:建议升级到最新稳定版(如2.5.6),新版改进了垃圾回收机制和存储管理逻辑。升级后系统会自动处理孤儿文件。
-
检查垃圾回收配置:确认dataCoord.gc.missingTolerance参数设置合理(如10800秒),该参数控制垃圾回收的容忍时间。
-
监控写入模式:避免频繁的手动flush操作,检查是否有异常的upsert或删除操作导致存储膨胀。
-
使用诊断工具:通过Milvus提供的mck工具诊断存储问题,该工具可以识别无效的分区、段和MinIO路径。
-
检查数据协调器日志:详细分析datacoord组件的日志,确认垃圾回收是否按预期执行(默认每天执行一次)。
重要注意事项
-
切勿手动删除文件:直接删除insert_log等文件会导致数据永久丢失,这些文件包含实际的向量数据。
-
存储膨胀的临时影响:在问题解决前,存储膨胀不会影响查询性能,但会占用额外磁盘空间。
-
MinIO版本影响:虽然Milvus使用的MinIO版本(如2021-02-14)较旧,但这通常不是存储膨胀的主要原因。
总结
Milvus集群的存储异常膨胀通常源于垃圾回收机制未能及时执行或写入模式异常。通过版本升级、配置优化和写入模式调整,可以有效解决此类问题。对于生产环境,建议定期监控存储使用情况,并在升级前充分测试新版本的稳定性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00