首页
/ EfficientViT架构中MBConv与FFN+DWConv的等价性解析

EfficientViT架构中MBConv与FFN+DWConv的等价性解析

2025-06-28 13:22:29作者:沈韬淼Beryl

在MIT-Han-Lab团队开发的EfficientViT模型中,一个值得深入探讨的技术细节是MBConv模块与论文中描述的FFN+DWConv结构之间的等价关系。本文将从架构设计角度剖析这一技术实现细节。

架构设计背景

EfficientViT论文中描述的每个stage由MBConv模块和EfficientViT块组成,其中EfficientViT块包含线性注意力(Linear ReLU Attention)和FFN+DWConv结构。这种设计旨在结合CNN的局部特征提取能力和Transformer的全局建模能力。

代码实现分析

在实际代码实现中,开发者使用了MBConv模块来替代论文中描述的FFN+DWConv结构。这种替代并非功能上的简化,而是基于以下技术考量:

  1. MBConv的结构组成:标准的MBConv由扩展卷积(Expansion)、深度可分离卷积(DWConv)和投影卷积(Projection)三部分组成
  2. 功能等价性:MBConv中的扩展卷积可以视为FFN的第一层线性变换,DWConv保持局部特征提取能力,最后的投影卷积相当于FFN的第二层线性变换

技术实现细节

具体来看,MBConv模块的工作流程如下:

  1. 1×1卷积扩展通道维度(相当于FFN的升维)
  2. 深度可分离卷积处理空间信息(实现DWConv的局部特征提取)
  3. 1×1卷积压缩通道维度(相当于FFN的降维)

这种实现方式不仅保持了论文中FFN+DWConv的设计初衷,还带来了以下优势:

  • 代码实现更加简洁统一
  • 可以利用成熟的MBConv优化技术
  • 保持与MobileNet系列模型的兼容性

设计选择的意义

这种设计选择体现了深度学习模型设计中一个重要的原则:理论设计与工程实现的平衡。虽然论文中使用FFN+DWConv的描述更符合Transformer架构的传统表述,但实际采用MBConv实现具有以下实际意义:

  1. 计算效率优化:MBConv经过大量优化,在移动端设备上运行效率更高
  2. 参数利用率:MBConv的瓶颈结构可以更高效地利用参数
  3. 实现一致性:整个模型统一使用卷积类模块,减少实现复杂度

总结

EfficientViT中MBConv替代FFN+DWConv的设计展示了深度学习模型设计中理论描述与实际实现之间的灵活转换。这种等价替换不仅没有损失模型性能,反而通过成熟的卷积模块优化带来了实际的效率提升。理解这种设计思路对于深度学习从业者在模型设计和实现之间的权衡具有重要参考价值。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
155
1.99 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
pytorchpytorch
Ascend Extension for PyTorch
Python
38
72
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
942
555
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
405
387
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
396
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
517
49
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
345
1.32 K