Intel Compute Runtime 25.22.33944.8版本发布:全面支持新一代GPU架构
Intel Compute Runtime是英特尔推出的开源计算运行时环境,它为开发者提供了在英特尔GPU上运行OpenCL和Level Zero应用程序的能力。作为英特尔GPU生态系统的核心组件,Compute Runtime持续更新以支持最新的硬件架构和API标准。
本次发布的25.22.33944.8版本带来了多项重要更新,特别加强了对英特尔最新GPU架构的支持。该版本包含两个核心组件:intel-gmmlib(图形内存管理库)和compute-runtime(计算运行时本身),它们共同构成了英特尔GPU计算的基础软件栈。
关键组件与版本信息
本次发布的核心组件版本为:
- intel-gmmlib 22.7.0版本
- compute-runtime 25.22.33944.8版本
构建过程中还使用了其他关键组件:
- libva 2.2.0版本(兼容va_api_major_version = 1)
- Level Zero 1.21.9版本(支持Level Zero规范1.12.15)
- 英特尔图形编译器(IGC) 2.12.5版本
- 英特尔图形系统控制器(IGSC) 0.9.5版本
平台支持与质量评估
该版本对英特尔各代GPU平台提供了不同级别的支持:
生产级支持平台:
- DG1独立显卡
- Alchemist架构显卡(Arc A系列)
- Battlemage架构显卡(Arc B系列)
- 从Tiger Lake到Arrow Lake的各代集成显卡
这些平台都通过了OpenCL 3.0和Level Zero 1.6标准的完整验证,确保生产环境的稳定性和兼容性。
预发布支持平台:
- Panther Lake架构(目前处于预发布阶段)
特别值得注意的是,针对Lunar Lake和Battlemage架构,推荐使用Ubuntu 24.10操作系统配合intel-graphics PPA,以获得最佳体验。
安装指南
在Ubuntu 24.04系统上安装该版本的步骤如下:
- 创建临时目录并下载所有必要的deb包
- 验证下载包的SHA256校验和
- 使用dpkg命令安装所有包
安装过程中可能需要先安装一些依赖项,如ocl-icd-libopencl1等。对于使用传统平台的用户,建议参考专门的legacy平台支持文档。
技术特性与改进
该版本在构建时启用了NEO_ENABLE_I915_PRELIM_DETECTION=1标志,这增强了对新硬件的早期检测能力。同时,所有支持的平台都在Ubuntu 24.04 LTS(内核版本6.8.0-48-generic)上进行了验证,确保系统兼容性。
对于Windows Subsystem for Linux(WSL)用户,该版本与Windows主机驱动101.6874版本配合使用,提供了完整的GPU加速支持。
总结
Intel Compute Runtime 25.22.33944.8版本延续了英特尔对开源GPU计算生态的承诺,为开发者提供了稳定、高效的计算运行时环境。通过支持从传统到最新的各种GPU架构,该版本确保了广泛的硬件兼容性,同时通过OpenCL 3.0和Level Zero 1.6标准的实现,提供了现代GPU计算所需的API功能。
对于需要使用英特尔GPU进行高性能计算的开发者,这个版本是一个值得升级的选择,特别是在使用最新硬件平台的情况下。随着英特尔GPU产品线的不断扩展,Compute Runtime的持续更新将为开发者提供更好的工具支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00