首页
/ EasyEdit项目中SEARC方法训练损失函数的实现解析

EasyEdit项目中SEARC方法训练损失函数的实现解析

2025-07-03 14:16:49作者:邬祺芯Juliet

在EasyEdit项目中,SEARC(Search-based Editable and Robust Counterfactuals)方法的实现引起了开发者们的关注。本文将从技术实现角度深入分析SEARC方法中训练损失函数的设计与实现细节。

损失函数的核心实现

SEARC方法在EasyEdit项目中的损失函数实现主要位于editable_model.py文件中。从代码实现来看,项目针对不同类型的模型架构设计了统一的损失函数接口,通过masked_log_probs函数计算负对数似然损失(NLL)。

实现中特别考虑了不同模型架构的特殊需求:

  • 对于MiniGPT4、BLIP等视觉语言模型,增加了exact_match和shift参数
  • 对于T5等纯文本模型,使用基础配置
  • 对于GPT、LLaMA、InternLM、ChatGLM、Qwen、Mistral等自回归模型,都启用了shift参数

与原始论文的对应关系

虽然表面上看代码实现与论文中的公式表述形式不同,但实际上masked_log_probs函数最终计算的就是负对数似然损失。在底层实现中,项目通过交叉熵损失函数来计算预测分布与目标分布之间的差异,这与论文中描述的目标函数在数学本质上是等价的。

分类器与反事实模型的联合训练

值得注意的是,SEARC方法中的分类器(scope classifier)和小型反事实模型(counterfact model)是联合训练的。这种设计借鉴了SERAC方法的思路,通过端到端的训练方式使两个组件能够协同工作,共同优化编辑效果。

技术实现细节

在底层实现上,损失计算考虑了多种情况:

  1. 处理不同模型架构的输入输出格式差异
  2. 对自回归模型进行适当的位移处理(shift)
  3. 支持精确匹配(exact_match)等特殊需求
  4. 处理不同模型的特殊token和掩码逻辑

这种灵活的设计使得SEARC方法能够适配多种主流的大语言模型架构,保证了方法在不同场景下的适用性。

总结

EasyEdit项目中的SEARC实现通过精心设计的损失函数架构,既保持了与原始论文方法的一致性,又增加了对不同模型架构的适配能力。理解这一实现细节有助于开发者更好地使用和扩展该方法,也体现了项目团队在模型编辑领域的技术积累。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8