PyTorch中ConvTranspose2d的stride>1行为解析
2025-04-29 23:48:51作者:裘晴惠Vivianne
在深度学习框架PyTorch中,ConvTranspose2d(转置卷积)是一个常用的上采样操作,广泛应用于图像生成、语义分割等需要增加特征图空间分辨率的任务。然而,许多用户对其在stride>1时的具体行为存在理解误区,本文将深入剖析这一操作的底层机制。
转置卷积的基本原理
转置卷积并非传统意义上的卷积逆运算,而是一种特殊的卷积形式。当stride=1时,它等同于常规卷积操作;但当stride>1时,其行为就变得复杂而有趣。
stride>1时的特殊行为
PyTorch的ConvTranspose2d在stride>1时会执行一个关键步骤:在输入特征图的元素之间插入零值。这一过程可以分解为:
- 零填充阶段:在输入张量的每个空间维度(高度和宽度)上,在相邻元素之间插入
(stride-1)个零值 - 卷积运算阶段:随后对扩展后的张量应用常规卷积操作
例如,当stride=2时,每个输入元素后都会插入一个零值,这相当于将特征图的空间尺寸扩大了一倍。
与普通上采样的区别
初学者常将转置卷积与nn.Upsample等插值方法混淆,但两者有本质区别:
- 转置卷积:通过可学习的卷积核参数进行上采样,能够自适应地学习最优的上采样方式
- 插值上采样:使用固定的数学方法(如双线性、最近邻)进行插值,没有可学习参数
输出形状的计算
理解零插入机制后,输出形状的计算公式就更加直观了。对于输入尺寸为的张量,输出尺寸为:
实际应用建议
- 初始化技巧:转置卷积层需要谨慎初始化,过大或过小的初始值可能导致训练不稳定
- 棋盘效应:大stride可能导致输出出现棋盘伪影,可考虑使用渐进式上采样(多个小stride层叠加)
- 与批归一化配合:转置卷积后通常接批归一化层,有助于稳定训练
理解ConvTranspose2d的底层机制,将帮助开发者更有效地设计生成模型和分割网络架构,避免常见的误用情况。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873