深入理解attrs项目中类的双重初始化问题
在Python的attrs项目中,当使用类继承机制时,开发者可能会遇到一个有趣的现象:基类的__init_subclass__方法会被调用两次。这个问题看似简单,却涉及Python类创建机制和attrs内部实现的深层原理。
问题现象
当创建一个继承自普通基类的attrs类时,基类的__init_subclass__方法会被执行两次。通过打印类对象的信息可以发现,两次调用时传入的类对象实际上是不同的实例,它们的哈希值不同,且第二次调用时类已经被attrs处理过(has(cls)返回True)。
原因分析
这一现象的根本原因在于attrs对类创建过程的特殊处理:
-
默认情况下(使用slot):attrs会创建两个类对象 - 原始类和经过attrs处理的类。这种双重创建导致了
__init_subclass__的双重调用。 -
禁用slot的情况下:虽然不会创建两个类对象,但
__init_subclass__会在attrs完成类组装之前就被调用,同样不是理想的行为。
解决方案
attrs项目最新版本(2023年8月后)引入了一个新的解决方案:__attrs_init_subclass__方法。这个方法专门用于处理attrs类继承时的初始化逻辑,确保在适当的时机被调用。
开发者应该优先使用这个新方法,而不是直接使用__init_subclass__。如果确实需要同时使用两者,可以通过检查类名(cls.__name__)来区分不同的调用阶段。
最佳实践
- 对于纯attrs类,优先使用
__attrs_init_subclass__方法 - 如果需要与普通Python类兼容,可以同时实现两个方法,但要注意调用顺序和重复执行的问题
- 在混合使用时,可以通过类名或其他标志来识别不同的初始化阶段
技术背景
这一问题的出现源于Python的类创建机制和attrs的类转换过程之间的交互。attrs为了提供其强大的功能(如自动生成__init__方法、属性管理等),需要在类创建过程中进行额外的处理步骤,这自然会影响标准的类初始化流程。
理解这一机制有助于开发者更好地设计基于attrs的类层次结构,避免在类初始化时出现意外的副作用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00