ETLCPP/etl 项目新增 partition 和 nth_element 算法解析
2025-07-01 08:38:23作者:殷蕙予
在嵌入式模板库(ETL)的最新更新中,开发者为项目添加了两个重要的STL风格算法:etl::partition和etl::nth_element。这两个算法都是标准模板库(STL)中非常实用的算法,现在被移植到了ETL项目中,为嵌入式开发者提供了更多高效的数据处理工具。
partition 算法解析
etl::partition算法的主要功能是根据给定的谓词(predicate)将容器中的元素重新排列,使得所有满足谓词的元素都排在前面,不满足的则排在后面。这个算法的时间复杂度为O(n),是一种非常高效的分类算法。
在实际应用中,partition可以用于:
- 快速将数据分为满足条件和不满足条件的两部分
- 在嵌入式系统中对传感器数据进行预处理
- 实现快速选择算法的基础
nth_element 算法解析
etl::nth_element是一个部分排序算法,它能够确保在重新排列元素后,第n个位置的元素就是排序后应该在该位置的元素,同时保证前面的元素都不大于它,后面的元素都不小于它。这个算法的时间复杂度平均为O(n),最坏情况下为O(n²)。
该算法特别适用于:
- 查找中位数或其他百分位数
- 嵌入式系统中需要快速获取前N个元素而不需要完全排序的场景
- 资源受限环境下需要高效统计分析的场合
实现细节与优化
在ETL的实现中,这两个算法都经过了针对嵌入式系统的优化:
- 内存占用极小,适合资源受限环境
- 避免动态内存分配
- 提供编译时安全性检查
- 支持ETL的各种容器类型
应用示例
#include "etl/algorithm.h"
int main() {
etl::vector<int, 10> data = {9, 3, 6, 2, 7, 1, 8, 4, 5};
// 使用partition将偶数放在前面
auto it = etl::partition(data.begin(), data.end(), [](int x){ return x % 2 == 0; });
// 使用nth_element找到中位数
etl::nth_element(data.begin(), data.begin() + data.size()/2, data.end());
int median = data[data.size()/2];
return 0;
}
总结
ETL项目新增的这两个算法为嵌入式开发者提供了更强大的数据处理能力。partition和nth_element都是经过优化的高效算法,特别适合在资源受限的嵌入式环境中使用。它们的加入进一步完善了ETL的算法库,使得开发者能够在嵌入式系统中更方便地实现复杂的数据处理逻辑。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146