PyTorch/XLA 中利用 shard_as 优化分片策略避免内存溢出问题
背景介绍
在 PyTorch/XLA 项目中,当使用 2D 分片策略(结合 FSDP 和 TP)训练大型语言模型时,特别是对于像 Llama 3.1 405B 这样的超大规模模型,经常会遇到内存溢出(OOM)问题。这个问题在 decoder 层被封装到 XLA While 操作(通过 torch_xla.experimental.scan 实现)时尤为突出。
问题分析
现象表现
在 v6e-256 TPU 上训练 Llama 3.1 405B 模型时,当使用 2D 分片策略(FSDP + TP)时,在反向传播过程中会出现内存溢出。通过内存分析发现:
- OOM 发生在反向传播的 scan 操作期间
- 编译器生成的卷积操作(convolution.171)输出形状为 [1, 4K, 16K]
- 该输出张量在 FSDP 轴上进行 all-reduce 操作,形状保持不变
- all-reduce 后的张量被写入形状为 [126, 4K, 16K] 的堆叠输出张量中
- 这个巨大的张量无法在单个芯片上实例化,导致编译失败
根本原因
问题源于 GSPMD 在传播 2D 分片注释时的行为。在矩阵乘法中,当收缩维度具有匹配的分片注释时:
A[M_X, N_Y] · B[N_Y, M_X] = C[M_?, M_?]
其中 N 维度被收缩,网格轴 X 也随之消失。根据 GSPMD 论文,结果将仅保持 1D 分片。在反向传播过程中,这个 1D 分片的梯度张量会"感染"整个堆叠数组,导致产生形状为 [126, 4K, 16K] 的过大数组。
解决方案:shard_as 的应用
shard_as 原理
shard_as 是 GSPMD 的一个特性,它可以确保输入在 GSPMD 分片传播后具有相同的分片策略。具体来说,它会对输入施加额外的分片约束,使梯度与其对应的输入保持相同的分片方式。
实现方法
在 PyTorch/XLA 中,我们通过在 scan 的反向传播过程中使用 shard_as 来解决问题。具体实现是创建一个反向传播包装器,该包装器:
- 调用层的原始反向传播
- 使用 shard_as 确保:
- carry 的梯度与 grad_carry 保持相同分片
- 输入梯度 (grad_x) 与堆叠输入数组的第一个元素保持相同分片
代码示例
def _backward_shard_alike(carry, x, backward, init, xs):
grad_carry, grad_x = backward(carry, x)
# 在正向输入和反向输出之间传播分片策略
_, grad_carry = shard_as(init, grad_carry)
_, grad_x = shard_as(tree_map(lambda v: v[0], xs), grad_x)
return grad_carry, grad_x
技术优势
- 自动分片传播:不需要手动指定每个权重的分片策略
- 正交性:SPMD 和 scan 操作保持解耦,代码结构更清晰
- 通用性:不依赖特定张量识别,适用于各种模型结构
- 内存优化:有效防止了梯度张量的不合理分片导致的内存爆炸
替代方案对比
曾经考虑过另一种方案:在 scan 操作上暴露一个关键字参数,允许用户在反向传播时指定权重的预期分片注释。但这种方案存在明显缺点:
- 由于 scan 使用 AOTAutograd 将组合函数转换为功能图,我们无法区分各个张量
- 不知道 FX 图中哪些输出对应哪些变量
- 将 SPMD 和 scan 的 API 混合在一起违反了关注点分离原则
相比之下,shard_as 方案更加优雅和通用,不需要识别特定张量,只需简单地约束梯度张量与输入张量的分片一致性。
结论
通过在 PyTorch/XLA 的 scan 操作中引入 shard_as 机制,我们成功解决了大规模模型训练中的内存溢出问题。这一改进不仅使 Llama 3.1 405B 等超大规模模型能够在 v6e-256 TPU 上稳定训练,还为未来更大规模模型的分布式训练提供了可靠的技术基础。该方案的设计体现了对 GSPMD 分片传播机制的深刻理解,以及对 PyTorch/XLA 框架特性的合理利用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0117
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00